Scaffolds can be used to substitute the extracellular matrix and to favour the generation of tissues and organs. Until now, various processes have been implemented for scaffolds generation, but they are characterized by several limits. Objective: In this work, we tested a supercritical fluids assisted process for the generation of nano-structured biopolymeric scaffolds; it is characterized by three steps: generation of a polymeric gel (loaded with a porogen), drying of the gel using supercritical CO2, waterwashing to remove the porogen. 3D Poly(D,L-lactic acid) scaffolds have been obtained, characterized by very high porosity (> 90%) and surface are (> 200 m2/g), and by a fibrous nanostructure (fibres ranging between 60 and 400 nm) superimposed to a micrometric cellular structure. Conclusion: Moreover, suitable mechanical properties (up to 125 KPa) and very low solvents residue (< 5 ppm) have been obtained.

Using a 3-steps supercritical fluids assisted process for the generation of nanostructured biopolymeric scaffolds

Cardea S.
2019-01-01

Abstract

Scaffolds can be used to substitute the extracellular matrix and to favour the generation of tissues and organs. Until now, various processes have been implemented for scaffolds generation, but they are characterized by several limits. Objective: In this work, we tested a supercritical fluids assisted process for the generation of nano-structured biopolymeric scaffolds; it is characterized by three steps: generation of a polymeric gel (loaded with a porogen), drying of the gel using supercritical CO2, waterwashing to remove the porogen. 3D Poly(D,L-lactic acid) scaffolds have been obtained, characterized by very high porosity (> 90%) and surface are (> 200 m2/g), and by a fibrous nanostructure (fibres ranging between 60 and 400 nm) superimposed to a micrometric cellular structure. Conclusion: Moreover, suitable mechanical properties (up to 125 KPa) and very low solvents residue (< 5 ppm) have been obtained.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4727868
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact