Influence of different graphite-based nanofillers on crosslinking reaction of resorcinol, as induced by hexa(methoxymethyl)melamine, is studied. Curing reactions leading from low molecular mass compounds to crosslinked insoluble networks are studied by indirect methods based on Differential Scanning Calorimetry. Reported results show a catalytic activity of graphene oxide (eGO) on this reaction, comparable to that one already described in the literature for curing of benzoxazine. For instance, for an eGO content of 2 wt %, the exothermic crosslinking DSC peak (upon heating at 10 degrees C/min) shifted 6 degrees C. More relevantly, oxidized carbon black (oCB) is much more effective as catalyst of the considered curing reaction. In fact, for an oCB content of 2 wt %, the crosslinking DSC peak can be shifted more than 30 degrees C and a nearly complete crosslinking is already achieved by thermal treatment at 120 degrees C. The possible origin of the higher catalytic activity of oCB with respect to eGO is discussed.

Graphene oxide and oxidized carbon black as catalyst for crosslinking of phenolic resins

Acocella M. R.;Guerra G.
Conceptualization
;
2019-01-01

Abstract

Influence of different graphite-based nanofillers on crosslinking reaction of resorcinol, as induced by hexa(methoxymethyl)melamine, is studied. Curing reactions leading from low molecular mass compounds to crosslinked insoluble networks are studied by indirect methods based on Differential Scanning Calorimetry. Reported results show a catalytic activity of graphene oxide (eGO) on this reaction, comparable to that one already described in the literature for curing of benzoxazine. For instance, for an eGO content of 2 wt %, the exothermic crosslinking DSC peak (upon heating at 10 degrees C/min) shifted 6 degrees C. More relevantly, oxidized carbon black (oCB) is much more effective as catalyst of the considered curing reaction. In fact, for an oCB content of 2 wt %, the crosslinking DSC peak can be shifted more than 30 degrees C and a nearly complete crosslinking is already achieved by thermal treatment at 120 degrees C. The possible origin of the higher catalytic activity of oCB with respect to eGO is discussed.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4731028
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact