We study a model of spiking neurons, with recurrent connections that result from learning a set of spatio-temporal patterns with a spike-timing dependent plasticity rule and a global inhibition. We investigate the ability of the network to store and selectively replay multiple patterns of spikes, with a combination of spatial population and phase-of-spike code. Each neuron in a pattern is characterized by a binary variable determining if the neuron is active in the pattern, and a phase-lag variable representing the spike-timing order among the active units. After the learning stage, we study the dynamics of the network induced by a brief cue stimulation, and verify that the network is able to selectively replay the pattern correctly and persistently. We calculate the information capacity of the network, defined as the maximum number of patterns that can be encoded in the network times the number of bits carried by each pattern, normalized by the number of synapses, and find that it can reach a value αmax≃0.27, similar to the one of sequence processing neural networks, and almost double of the capacity of the static Hopfield model. We study the dependence of the capacity on the global inhibition, connection strength (or neuron threshold) and fraction of neurons participating to the patterns. The results show that a dual population and temporal coding can be optimal for the capacity of an associative memory.
Information capacity of a network of spiking neurons
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Silvia Scarpetta
						
						
						
							Membro del Collaboration Group
;
	
		
		
	
			2020
Abstract
We study a model of spiking neurons, with recurrent connections that result from learning a set of spatio-temporal patterns with a spike-timing dependent plasticity rule and a global inhibition. We investigate the ability of the network to store and selectively replay multiple patterns of spikes, with a combination of spatial population and phase-of-spike code. Each neuron in a pattern is characterized by a binary variable determining if the neuron is active in the pattern, and a phase-lag variable representing the spike-timing order among the active units. After the learning stage, we study the dynamics of the network induced by a brief cue stimulation, and verify that the network is able to selectively replay the pattern correctly and persistently. We calculate the information capacity of the network, defined as the maximum number of patterns that can be encoded in the network times the number of bits carried by each pattern, normalized by the number of synapses, and find that it can reach a value αmax≃0.27, similar to the one of sequence processing neural networks, and almost double of the capacity of the static Hopfield model. We study the dependence of the capacity on the global inhibition, connection strength (or neuron threshold) and fraction of neurons participating to the patterns. The results show that a dual population and temporal coding can be optimal for the capacity of an associative memory.| File | Dimensione | Formato | |
|---|---|---|---|
| scarpetta_physicaA_2020.pdf accesso aperto 
											Descrizione: pre print arXiv articolo physica A
										 
											Tipologia:
											Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										410.33 kB
									 
										Formato
										Adobe PDF
									 | 410.33 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


