Evolutionary algorithms mimic evolutionary behaviors in order to solve problems. They have been successfully applied in many areas and appear to have a special relationship with creative problems; such a relationship, over the last two decades, has resulted in a long list of applications, including several in the field of music. In this article, we provide an evolutionary algorithm able to compose music. More specifically we consider the following 4-voice harmonization problem: one of the 4 voices (which are bass, tenor, alto, and soprano) is given as input and the composer has to write the other 3 voices in order to have a complete 4-voice piece of music with a 4-note chord for each input note. Solving such a problem means finding appropriate chords to use for each input note and also finding a placement of the notes within each chord so that melodic concerns are addressed. Such a problem is known as the unfigured harmonization problem. The proposed algorithm for the unfigured harmonization problem, named EvoComposer, uses a novel representation of the solutions in terms of chromosomes (that allows to handle both harmonic and nonharmonic tones), specialized operators (that exploit musical information to improve the quality of the produced individuals), and a novel hybrid multiobjective evaluation function (based on an original statistical analysis of a large corpus of Bach’s music). Moreover EvoComposer is the first evolutionary algorithm for this specific problem. EvoComposer is a multiobjective evolutionary algorithm, based on the well-known NSGA-II strategy, and takes into consideration two objectives: the harmonic objective, that is finding appropriate chords, and the melodic objective, that is finding appropriate melodic lines. The composing process is totally automatic, without any human intervention. We also provide an evaluation study showing that EvoComposer outperforms other metaheuristics by producing better solutions in terms of both well-known measures of performance, such as hypervolume, Delta index, coverage of two sets, and standard measures of music creativity. We conjecture that a similar approach can be useful also for similar musical problems.

EvoComposer: An Evolutionary Algorithm for 4-voice Music Compositions

De Prisco Roberto;Zaccagnino Gianluca;Zaccagnino Rocco.
2020-01-01

Abstract

Evolutionary algorithms mimic evolutionary behaviors in order to solve problems. They have been successfully applied in many areas and appear to have a special relationship with creative problems; such a relationship, over the last two decades, has resulted in a long list of applications, including several in the field of music. In this article, we provide an evolutionary algorithm able to compose music. More specifically we consider the following 4-voice harmonization problem: one of the 4 voices (which are bass, tenor, alto, and soprano) is given as input and the composer has to write the other 3 voices in order to have a complete 4-voice piece of music with a 4-note chord for each input note. Solving such a problem means finding appropriate chords to use for each input note and also finding a placement of the notes within each chord so that melodic concerns are addressed. Such a problem is known as the unfigured harmonization problem. The proposed algorithm for the unfigured harmonization problem, named EvoComposer, uses a novel representation of the solutions in terms of chromosomes (that allows to handle both harmonic and nonharmonic tones), specialized operators (that exploit musical information to improve the quality of the produced individuals), and a novel hybrid multiobjective evaluation function (based on an original statistical analysis of a large corpus of Bach’s music). Moreover EvoComposer is the first evolutionary algorithm for this specific problem. EvoComposer is a multiobjective evolutionary algorithm, based on the well-known NSGA-II strategy, and takes into consideration two objectives: the harmonic objective, that is finding appropriate chords, and the melodic objective, that is finding appropriate melodic lines. The composing process is totally automatic, without any human intervention. We also provide an evaluation study showing that EvoComposer outperforms other metaheuristics by producing better solutions in terms of both well-known measures of performance, such as hypervolume, Delta index, coverage of two sets, and standard measures of music creativity. We conjecture that a similar approach can be useful also for similar musical problems.
File in questo prodotto:
File Dimensione Formato  
EvoComposer.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4733154
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact