Frequency, amplitude, and phase information of the grid voltage are the main constraints for constructing a robust controller algorithm for grid connected applications under unbalanced and distorted voltage conditions. This paper narrates a simple, robust, straight forward method to estimate the instantaneous positive and negative sequence voltage components under unbalanced and distorted voltage circumstances. A second order generalized integrator (SOGI) is encapsulated to filter out the distorted voltage as well as to generate orthogonal voltage components for the three phases of AC grid. Furthermore, these filtered and orthogonal components are accounted for the calculation of instantaneous symmetrical components. Developed technique is more frequency adaptive compared to conventional phase locked loop (PLL) techniques. A set of test outcome results are provided in this paper based on MATLAB/Simulink simulations with real grid data captured from an industrial plant. Moreover, SOGI based estimator is digitally implemented by using dSPACE ds1103 digital controller to validate the numerical simulation results in accordance with the developed theoretical prediction.

Digital Application of Second Order Generalized Integrator Based Grid Estimator Under Unbalanced and Distorted Voltage Conditions

Siano P.;
2019-01-01

Abstract

Frequency, amplitude, and phase information of the grid voltage are the main constraints for constructing a robust controller algorithm for grid connected applications under unbalanced and distorted voltage conditions. This paper narrates a simple, robust, straight forward method to estimate the instantaneous positive and negative sequence voltage components under unbalanced and distorted voltage circumstances. A second order generalized integrator (SOGI) is encapsulated to filter out the distorted voltage as well as to generate orthogonal voltage components for the three phases of AC grid. Furthermore, these filtered and orthogonal components are accounted for the calculation of instantaneous symmetrical components. Developed technique is more frequency adaptive compared to conventional phase locked loop (PLL) techniques. A set of test outcome results are provided in this paper based on MATLAB/Simulink simulations with real grid data captured from an industrial plant. Moreover, SOGI based estimator is digitally implemented by using dSPACE ds1103 digital controller to validate the numerical simulation results in accordance with the developed theoretical prediction.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4734650
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact