This paper aims to demonstrate the superiority of the discrete Chebyshev polynomials over the classical Chebyshev polynomials for solving time-delay fractional optimal control problems (TDFOCPs). The discrete Chebyshev polynomials have been introduced and their properties are investigated thoroughly. Then, the fractional derivative of the state function in the dynamic constraint of TDFOCPs is approximated by these polynomials with unknown coefficients. The operational matrix of fractional integration together with the dynamical constraints is used to approximate the control function directly as a function of the state function. Finally, these approximations were put in the performance index and necessary conditions for optimality transform the under consideration TDFOCPs into an algabric system. A comparison has been made between the required CPU time and accuracy of the discrete and continuous Chebyshev polynomials methods. The obtained numerical results reveal that utilizing discrete Chebyshev polynomials is more efficient and less time-consuming in comparison to the continuous Chebyshev polynomials.

A Comparative Approach for Time-Delay Fractional Optimal Control Problems: Discrete Versus Continuous Chebyshev Polynomials

Moradi L.;
2020

Abstract

This paper aims to demonstrate the superiority of the discrete Chebyshev polynomials over the classical Chebyshev polynomials for solving time-delay fractional optimal control problems (TDFOCPs). The discrete Chebyshev polynomials have been introduced and their properties are investigated thoroughly. Then, the fractional derivative of the state function in the dynamic constraint of TDFOCPs is approximated by these polynomials with unknown coefficients. The operational matrix of fractional integration together with the dynamical constraints is used to approximate the control function directly as a function of the state function. Finally, these approximations were put in the performance index and necessary conditions for optimality transform the under consideration TDFOCPs into an algabric system. A comparison has been made between the required CPU time and accuracy of the discrete and continuous Chebyshev polynomials methods. The obtained numerical results reveal that utilizing discrete Chebyshev polynomials is more efficient and less time-consuming in comparison to the continuous Chebyshev polynomials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4734679
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact