Preparations of comfrey (Symphytum officinale L.) roots are used topically to reduce inflammation. Comfrey anti-inflammatory and analgesic properties have been proven in clinical studies. However, the bioactive compounds associated with these therapeutic activities are yet to be identified. An LC–ESI–Orbitrap–MSn metabolite profile of a hydroalcoholic extract of comfrey root guided the identification of 20 compounds, including a new arylnaphthalene lignan bearing a rare δ-lactone ring, named comfreyn A. Its structure was determined using extensive 2D NMR and ESI–MS experiments. Additionally, the occurrence of malaxinic acid, caffeic acid ethyl ester, along with the lignans ternifoliuslignan D, 3-carboxy-6,7-dihydroxy-1-(3′,4′-dihydroxyphenyl)-naphthalene, globoidnan A and B, and rabdosiin was reported in S. officinale for the first time. These results helped to redefine the metabolite profile of this medicinal plant. Finally, caffeic acid ethyl ester and comfreyn A were found to significantly inhibit E-selectin expression in IL-1β stimulated human umbilical vein endothelial cells (HUVEC), with EC values of 64 and 50 µM, respectively.

LC–ESI–FT–MSn metabolite profiling of symphytum officinale l. Roots leads to isolation of comfreyn a, an unusual arylnaphthalene lignan

D'urso G.;Masullo M.;Piacente S.
2020

Abstract

Preparations of comfrey (Symphytum officinale L.) roots are used topically to reduce inflammation. Comfrey anti-inflammatory and analgesic properties have been proven in clinical studies. However, the bioactive compounds associated with these therapeutic activities are yet to be identified. An LC–ESI–Orbitrap–MSn metabolite profile of a hydroalcoholic extract of comfrey root guided the identification of 20 compounds, including a new arylnaphthalene lignan bearing a rare δ-lactone ring, named comfreyn A. Its structure was determined using extensive 2D NMR and ESI–MS experiments. Additionally, the occurrence of malaxinic acid, caffeic acid ethyl ester, along with the lignans ternifoliuslignan D, 3-carboxy-6,7-dihydroxy-1-(3′,4′-dihydroxyphenyl)-naphthalene, globoidnan A and B, and rabdosiin was reported in S. officinale for the first time. These results helped to redefine the metabolite profile of this medicinal plant. Finally, caffeic acid ethyl ester and comfreyn A were found to significantly inhibit E-selectin expression in IL-1β stimulated human umbilical vein endothelial cells (HUVEC), with EC values of 64 and 50 µM, respectively.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4749109
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact