Liquid composite molding techniques are increasingly applied for the manufacturing of fiber-reinforced plastic components for civil, aerospace, and automotive applications. Being the preform impregnation a key step during the process, resin viscosity should meet the precise requirements. Opportune resin preheating increases its fluency, thus enhancing the impregnation and saturation flow through the fabric and reducing the mold filling time. This paper explores the application of microwave technology for resin preheating. The integration of an online microwave preheating system within a demonstrative resin infusion facility is described and the effects of preheating on the infusion time are discussed. Parallel-plate dielectric sensors were embedded into the mold to track the unheated and preheated resin flow through the fiber preform. The obtained results highlighted the effectiveness of online microwave heating to reduce the time required for the impregnation of the dry fiber reinforcement.

Flow enhancement in liquid composite molding processes by online microwave resin preheating

Felice Rubino;Vitantonio Esperto;Fausto Tucci;Pierpaolo Carlone
2020-01-01

Abstract

Liquid composite molding techniques are increasingly applied for the manufacturing of fiber-reinforced plastic components for civil, aerospace, and automotive applications. Being the preform impregnation a key step during the process, resin viscosity should meet the precise requirements. Opportune resin preheating increases its fluency, thus enhancing the impregnation and saturation flow through the fabric and reducing the mold filling time. This paper explores the application of microwave technology for resin preheating. The integration of an online microwave preheating system within a demonstrative resin infusion facility is described and the effects of preheating on the infusion time are discussed. Parallel-plate dielectric sensors were embedded into the mold to track the unheated and preheated resin flow through the fiber preform. The obtained results highlighted the effectiveness of online microwave heating to reduce the time required for the impregnation of the dry fiber reinforcement.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4749706
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact