This research falls in the antenna measurements related topic, and deals with the problem occurring in the classical spherical near-to-far-field (NTFF) transformation, when it becomes unpractical to mount the antenna under test (AUT) with its center at the center of the scanning sphere. This issue reflects in a growth of the number of near-field (NF) samples to be acquired, since this number depends on the radius of the minimum sphere, which contains the antenna, and is centered at the scanning sphere center. The non-redundant sampling representations of the electromagnetic field are conveniently exploited, to develop an effective spherical NTFF transformation for non-centered AUTs with quasi-planar geometry, requiring a minimum amount of NF samples, and nearly the same as that for a centered mounting of the AUT. Then, the NF data needed to perform the classical NTFF transformation are determined in efficient way from the acquired non-redundant NF samples by employing an accurate 2-D sampling interpolation scheme. Thus, it is possible to significantly save measurement time. Some simulation and laboratory results are reported to show the effectiveness of the developed technique, which takes into account a non-centered AUT mounting.
A spherical near-to-far-field transformation using a non-redundant voltage representation optimized for non-centered mounted quasi-planar antennas
D'agostino F.;Ferrara F.;Gennarelli C.;Guerriero R.;Migliozzi M.
2020-01-01
Abstract
This research falls in the antenna measurements related topic, and deals with the problem occurring in the classical spherical near-to-far-field (NTFF) transformation, when it becomes unpractical to mount the antenna under test (AUT) with its center at the center of the scanning sphere. This issue reflects in a growth of the number of near-field (NF) samples to be acquired, since this number depends on the radius of the minimum sphere, which contains the antenna, and is centered at the scanning sphere center. The non-redundant sampling representations of the electromagnetic field are conveniently exploited, to develop an effective spherical NTFF transformation for non-centered AUTs with quasi-planar geometry, requiring a minimum amount of NF samples, and nearly the same as that for a centered mounting of the AUT. Then, the NF data needed to perform the classical NTFF transformation are determined in efficient way from the acquired non-redundant NF samples by employing an accurate 2-D sampling interpolation scheme. Thus, it is possible to significantly save measurement time. Some simulation and laboratory results are reported to show the effectiveness of the developed technique, which takes into account a non-centered AUT mounting.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.