Lipase from Candida rugosa was physically attached to Mg modified Fe2O4 nanoparticles (NPs) and employed for the conversion of brewers’ spent grains (BSGs) into biodiesel, in the presence of methanol. The proposed strategy explored the direct immobilization of the enzyme on the as-prepared oleic acid modified inexpensive NPs. In addition, a large amount of enzyme was bound on the NPs, allowing their efficient recycling by using an external magnet. A very remarkable better yield of 98% was achieved at 1:4 oil/methanol molar ratio after 48 h at 45 °C reaction temperature. The nanocatalyst also exhibits good recyclability. The biodiesel produced was analyzed according to EN 14214.

Candida rugosa lipase for the biodiesel production from renewable sources

Iuliano M.;Sarno M.
;
De Pasquale S.;Ponticorvo E.
2020-01-01

Abstract

Lipase from Candida rugosa was physically attached to Mg modified Fe2O4 nanoparticles (NPs) and employed for the conversion of brewers’ spent grains (BSGs) into biodiesel, in the presence of methanol. The proposed strategy explored the direct immobilization of the enzyme on the as-prepared oleic acid modified inexpensive NPs. In addition, a large amount of enzyme was bound on the NPs, allowing their efficient recycling by using an external magnet. A very remarkable better yield of 98% was achieved at 1:4 oil/methanol molar ratio after 48 h at 45 °C reaction temperature. The nanocatalyst also exhibits good recyclability. The biodiesel produced was analyzed according to EN 14214.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4750475
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact