In the era of Industry 4.0, cognitive computing and its enabling technologies (Artificial Intelligence, Machine Learning, etc.) allow to define systems able to support maintenance by providing relevant information, at the right time, retrieved from structured companies' databases, and unstructured documents, like technical manuals, intervention reports, and so on. Moreover, contextual information plays a crucial role in tailoring the support both during the planning and the execution of interventions. Contextual information can be detected with the help of sensors, wearable devices, indoor and outdoor positioning systems, and object recognition capabilities (using fixed or wearable cameras), all of which can collect historical data for further analysis.In this work, we propose a cognitive system that learns from past interventions to generate contextual recommendations for improving maintenance practices in terms of time, budget, and scope. The system uses formal conceptual models, incremental learning, and ranking algorithms to accomplish these objectives.

A Cognitive Approach based on the Actionable Knowledge Graph for supporting Maintenance Operations

Fenza G.;Gallo M.;Loia V.;Orciuoli F.
2020-01-01

Abstract

In the era of Industry 4.0, cognitive computing and its enabling technologies (Artificial Intelligence, Machine Learning, etc.) allow to define systems able to support maintenance by providing relevant information, at the right time, retrieved from structured companies' databases, and unstructured documents, like technical manuals, intervention reports, and so on. Moreover, contextual information plays a crucial role in tailoring the support both during the planning and the execution of interventions. Contextual information can be detected with the help of sensors, wearable devices, indoor and outdoor positioning systems, and object recognition capabilities (using fixed or wearable cameras), all of which can collect historical data for further analysis.In this work, we propose a cognitive system that learns from past interventions to generate contextual recommendations for improving maintenance practices in terms of time, budget, and scope. The system uses formal conceptual models, incremental learning, and ranking algorithms to accomplish these objectives.
2020
978-1-7281-4384-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4750708
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
social impact