In the field of multimodal communication, sign language is and continues to be, one of the most understudied areas. Thanks to the recent advances in the field of deep learning, there are far-reaching implications and applications that neural networks can have for sign language mastering. This paper describes a method for ASL alphabet recognition using Convolutional Neural Networks (CNN), which allows to monitor user’s learning progress. American Sign Language (ASL) alphabet recognition by computer vision is a challenging task due to the complexity in ASL signs, high interclass similarities, large intraclass variations, and constant occlusions. We produced a robust model that classifies letters correctly in a majority of cases. The experimental results encouraged us to investigate the adoption of AI techniques to support learning of a sign language, as a natural language with its own syntax and lexicon. The challenge was to deliver a mobile sign language training solution that users may adopt during their everyday life. To satisfy the indispensable additional computational resources to the locally connected end- user devices, we propose the adoption of a Fog-Computing Architecture.
AI at the Edge for Sign Language Learning Support
Pietro Battistoni
;Marianna Di Gregorio;Marco Romano
;Monica Sebillo;Giuliana Vitiello
2020-01-01
Abstract
In the field of multimodal communication, sign language is and continues to be, one of the most understudied areas. Thanks to the recent advances in the field of deep learning, there are far-reaching implications and applications that neural networks can have for sign language mastering. This paper describes a method for ASL alphabet recognition using Convolutional Neural Networks (CNN), which allows to monitor user’s learning progress. American Sign Language (ASL) alphabet recognition by computer vision is a challenging task due to the complexity in ASL signs, high interclass similarities, large intraclass variations, and constant occlusions. We produced a robust model that classifies letters correctly in a majority of cases. The experimental results encouraged us to investigate the adoption of AI techniques to support learning of a sign language, as a natural language with its own syntax and lexicon. The challenge was to deliver a mobile sign language training solution that users may adopt during their everyday life. To satisfy the indispensable additional computational resources to the locally connected end- user devices, we propose the adoption of a Fog-Computing Architecture.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.