The paper introduces improved stochastic ϑ-methods for the numerical integration of stochastic Volterra integral equations. Such methods, compared to those introduced by the authors in Conte et al. (2018)[14], have better stability properties. This is here made possible by inheriting the stability properties of the corresponding methods for systems of stochastic differential equations. Such a superiority is confirmed by a comparison of the stability regions.

Improved ϑ-methods for stochastic Volterra integral equations

Dajana Conte;Beatrice Paternoster
2021

Abstract

The paper introduces improved stochastic ϑ-methods for the numerical integration of stochastic Volterra integral equations. Such methods, compared to those introduced by the authors in Conte et al. (2018)[14], have better stability properties. This is here made possible by inheriting the stability properties of the corresponding methods for systems of stochastic differential equations. Such a superiority is confirmed by a comparison of the stability regions.
2021
File in questo prodotto:
File Dimensione Formato  
2021 POST PRINT Improved theta-methods for stochastic Volterra integral equations, Comm. Nonlin. Sci. Numer. Simul. 93, article number 105528 (2021).pdf

Open Access dal 01/01/2024

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 167.46 kB
Formato Adobe PDF
167.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4751067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact