We study higher-order elliptic operators on one-dimensional ramified structures (networks). We introduce a general variational framework for fourth-order operators that allows us to study features of both hyperbolic and parabolic equations driven by this class of operators. We observe that they extend to the higher-order case and discuss well-posedness and conservation of energy of beam equations, along with regularizing properties of polyharmonic heat kernels. A noteworthy finding is the discovery of a new class of well-posed evolution equations with Wentzell-type boundary conditions.

Higher-Order Operators on Networks: Hyperbolic and Parabolic Theory

Gregorio F.;
2020-01-01

Abstract

We study higher-order elliptic operators on one-dimensional ramified structures (networks). We introduce a general variational framework for fourth-order operators that allows us to study features of both hyperbolic and parabolic equations driven by this class of operators. We observe that they extend to the higher-order case and discuss well-posedness and conservation of energy of beam equations, along with regularizing properties of polyharmonic heat kernels. A noteworthy finding is the discovery of a new class of well-posed evolution equations with Wentzell-type boundary conditions.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4755171
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact