A novel scalable and privacy-preserving distributed parallel optimization that allows the participation of large-scale aggregation of prosumers with residential PV-battery systems in the market for the ancillary service (ASM) is proposed in this paper. To consider both reserve capacity and energy, day-ahead and real-time stages in the ASM are considered. A method based on hybrid Variable Neighborhood Search (VNS) and distributed parallel optimization is designed for the day ahead and real-time optimization. Different distributed optimization methods are compared and designed and a new distributed optimization method based on Linear Programming (LP) is proposed that outperforms previous methods based on integer and Quadratic programming (QP). The proposed LP-based optimization can be easily coded up and implemented on microcontrollers and connected to a designed Internet of Things (IoT) based architecture. As confirmed by simulation results, carried out considering different realistic case studies, both day-ahead and real-time proposed optimization methods, by allocating the computational effort among local resources, are highly scalable and fulfil the privacy of prosumers.

A Scalable Privacy Preserving Distributed Parallel Optimization for a Large-Scale Aggregation of Prosumers with Residential PV-Battery Systems

Siano P.
2020-01-01

Abstract

A novel scalable and privacy-preserving distributed parallel optimization that allows the participation of large-scale aggregation of prosumers with residential PV-battery systems in the market for the ancillary service (ASM) is proposed in this paper. To consider both reserve capacity and energy, day-ahead and real-time stages in the ASM are considered. A method based on hybrid Variable Neighborhood Search (VNS) and distributed parallel optimization is designed for the day ahead and real-time optimization. Different distributed optimization methods are compared and designed and a new distributed optimization method based on Linear Programming (LP) is proposed that outperforms previous methods based on integer and Quadratic programming (QP). The proposed LP-based optimization can be easily coded up and implemented on microcontrollers and connected to a designed Internet of Things (IoT) based architecture. As confirmed by simulation results, carried out considering different realistic case studies, both day-ahead and real-time proposed optimization methods, by allocating the computational effort among local resources, are highly scalable and fulfil the privacy of prosumers.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4757673
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact