Smart meters have been widely deployed in power networks since the last decade. This trend has resulted in an enormous volume of data being collected from the electricity customers. To gain benefits for various stakeholders in power systems, proper data mining techniques, such as clustering, need to be employed to extract the underlying patterns from energy consumptions. In this paper, a comparative study of different techniques for load pattern clustering is carried out. Different parameters of the methods that affect the clustering results are evaluated and the clustering algorithms are compared for two data sets. In addition, the two suitable and commonly used data size reduction techniques and feature definition/extraction methods for load pattern clustering are analysed. Furthermore, the existing studies on clustering of electricity customers are reviewed and the main results are highlighted. Finally, the future trends and major applications of clustering consumption patterns are outlined to inform industry practitioners and academic researchers to optimize smart meter operational use and effectiveness.

A comparative study of clustering techniques for electrical load pattern segmentation

Siano P.
2020-01-01

Abstract

Smart meters have been widely deployed in power networks since the last decade. This trend has resulted in an enormous volume of data being collected from the electricity customers. To gain benefits for various stakeholders in power systems, proper data mining techniques, such as clustering, need to be employed to extract the underlying patterns from energy consumptions. In this paper, a comparative study of different techniques for load pattern clustering is carried out. Different parameters of the methods that affect the clustering results are evaluated and the clustering algorithms are compared for two data sets. In addition, the two suitable and commonly used data size reduction techniques and feature definition/extraction methods for load pattern clustering are analysed. Furthermore, the existing studies on clustering of electricity customers are reviewed and the main results are highlighted. Finally, the future trends and major applications of clustering consumption patterns are outlined to inform industry practitioners and academic researchers to optimize smart meter operational use and effectiveness.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4757680
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 101
  • ???jsp.display-item.citation.isi??? 72
social impact