The complexity of power system networks is increasing continuously due to the addition of high capacity transmission lines. Faults on these lines may deteriorate the power flow pattern in the network. This can be avoided by the use of effective protection schemes. This paper presents an algorithm for detecting and classifying faults on the transmission network. Fault detection is achieved by utilizing the fault index, which depends on a combination of characteristics extracted from the current signal by the application of the Stockwell transform and Wigner distribution function (WDF). Various faults are categorized using the quantity of phases with a faulty nature. The fault events like phase to-ground (L-G), two phases (LL), two phases to-ground (LL-G), and three phases to-ground (LLL-G) are investigated in this study. The performance of the algorithm designed for the protection scheme is tested for the variations in the impedance during the fault event, variations in the angle of the fault incidence, different fault locations, the condition of the power flow in the reverse direction, the availability of noise, and the fault on the hybrid line consisting of two sections of underground cable and the overhead line. The algorithm is also analyzed for discriminating switching incidents from fault cases. A comparative study is used to establish the superiority of the proposed technique as compared to the Wavelet transform (WT) based protection scheme. The performance of the protection technique is established in MATLAB/Simulink software using a test network of the transmission line with two terminals.

Hybridization of the stockwell transform and wigner distribution function to design a transmission line protection scheme

Siano P.
2020-01-01

Abstract

The complexity of power system networks is increasing continuously due to the addition of high capacity transmission lines. Faults on these lines may deteriorate the power flow pattern in the network. This can be avoided by the use of effective protection schemes. This paper presents an algorithm for detecting and classifying faults on the transmission network. Fault detection is achieved by utilizing the fault index, which depends on a combination of characteristics extracted from the current signal by the application of the Stockwell transform and Wigner distribution function (WDF). Various faults are categorized using the quantity of phases with a faulty nature. The fault events like phase to-ground (L-G), two phases (LL), two phases to-ground (LL-G), and three phases to-ground (LLL-G) are investigated in this study. The performance of the algorithm designed for the protection scheme is tested for the variations in the impedance during the fault event, variations in the angle of the fault incidence, different fault locations, the condition of the power flow in the reverse direction, the availability of noise, and the fault on the hybrid line consisting of two sections of underground cable and the overhead line. The algorithm is also analyzed for discriminating switching incidents from fault cases. A comparative study is used to establish the superiority of the proposed technique as compared to the Wavelet transform (WT) based protection scheme. The performance of the protection technique is established in MATLAB/Simulink software using a test network of the transmission line with two terminals.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4757713
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
social impact