In the process of the operation and maintenance of secondary devices in smart substation, a wealth of defect texts containing the state information of the equipment is generated. Aiming to overcome the low efficiency and low accuracy problems of artificial power text classification and mining, combined with the characteristics of power equipment defect texts, a defect texts mining method for a secondary device in a smart substation is proposed, which integrates global vectors for word representation (GloVe) method and attention-based bidirectional long short-term memory (BiLSTM-Attention) method in one model. First, the characteristics of the defect texts are analyzed and preprocessed to improve the quality of the defect texts. Then, defect texts are segmented into words, and the words are mapped to the high-dimensional feature space based on the global vectors for word representation (GloVe) model to form distributed word vectors. Finally, a text classification model based on BiLSTM-Attention was proposed to classify the defect texts of a secondary device. Precision, Recall and F1-score are selected as evaluation indicators, and compared with traditional machine learning and deep learning models. The analysis of a case study shows that the BiLSTM-Attention model has better performance and can achieve the intelligent, accurate and efficient classification of secondary device defect texts. It can assist the operation and maintenance personnel to make scientific maintenance decisions on a secondary device and improve the level of intelligent management of equipment.

Defect texts mining of secondary device in smart substation with glove and attention-based bidirectional LSTM

Siano P.
2020-01-01

Abstract

In the process of the operation and maintenance of secondary devices in smart substation, a wealth of defect texts containing the state information of the equipment is generated. Aiming to overcome the low efficiency and low accuracy problems of artificial power text classification and mining, combined with the characteristics of power equipment defect texts, a defect texts mining method for a secondary device in a smart substation is proposed, which integrates global vectors for word representation (GloVe) method and attention-based bidirectional long short-term memory (BiLSTM-Attention) method in one model. First, the characteristics of the defect texts are analyzed and preprocessed to improve the quality of the defect texts. Then, defect texts are segmented into words, and the words are mapped to the high-dimensional feature space based on the global vectors for word representation (GloVe) model to form distributed word vectors. Finally, a text classification model based on BiLSTM-Attention was proposed to classify the defect texts of a secondary device. Precision, Recall and F1-score are selected as evaluation indicators, and compared with traditional machine learning and deep learning models. The analysis of a case study shows that the BiLSTM-Attention model has better performance and can achieve the intelligent, accurate and efficient classification of secondary device defect texts. It can assist the operation and maintenance personnel to make scientific maintenance decisions on a secondary device and improve the level of intelligent management of equipment.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4757733
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 13
social impact