A new non-isolated modified SEPIC front-end dc-dc converter for the low power system is proposed in this paper, and this converter is the next level of the traditional SEPIC converter with additional devices, such as two diodes and splitting of the output capacitor into two equal parts. The circuit topology proposed in this paper is formulated by combining the boost structure with the traditional SEPIC converter. Therefore, the proposed converter has the benefit of the SEPIC converter, such as continuous input current. The proposed circuit structure also improves the features, such as high voltage gain and high conversion efficiency. The converter comprises one MOSFET switch, one coupled inductor, three diodes, and two capacitors, including the output capacitor. The converter effectively recovers the leakage energy of the coupled inductor through the passive clamp circuit. The operation of the proposed converter is explained in continuous conduction mode (CCM) and discontinuous conduction mode (DCM). The required voltage gain of the converter can be acquired by adjusting the coupled inductor turn’s ratio along with the additional devices at less duty cycle of the switch. The simulation of the proposed converter under CCM is carried out, and an experimental prototype of 100 W, 25 V/200 V is made, and the experimental outcomes are presented to validate the theoretical discussions of the proposed converter. The operating performance of the proposed converter is compared with the converters discussed in the literature. The proposed converter can be extended by connecting voltage multiplier (VM) cell circuits to get the ultra-high voltage gain.

Design and development of non-isolated modified SEPIC DC-DC converter topology for high-step-up applications: Investigation and hardware implementation

Siano P.
2020-01-01

Abstract

A new non-isolated modified SEPIC front-end dc-dc converter for the low power system is proposed in this paper, and this converter is the next level of the traditional SEPIC converter with additional devices, such as two diodes and splitting of the output capacitor into two equal parts. The circuit topology proposed in this paper is formulated by combining the boost structure with the traditional SEPIC converter. Therefore, the proposed converter has the benefit of the SEPIC converter, such as continuous input current. The proposed circuit structure also improves the features, such as high voltage gain and high conversion efficiency. The converter comprises one MOSFET switch, one coupled inductor, three diodes, and two capacitors, including the output capacitor. The converter effectively recovers the leakage energy of the coupled inductor through the passive clamp circuit. The operation of the proposed converter is explained in continuous conduction mode (CCM) and discontinuous conduction mode (DCM). The required voltage gain of the converter can be acquired by adjusting the coupled inductor turn’s ratio along with the additional devices at less duty cycle of the switch. The simulation of the proposed converter under CCM is carried out, and an experimental prototype of 100 W, 25 V/200 V is made, and the experimental outcomes are presented to validate the theoretical discussions of the proposed converter. The operating performance of the proposed converter is compared with the converters discussed in the literature. The proposed converter can be extended by connecting voltage multiplier (VM) cell circuits to get the ultra-high voltage gain.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4757735
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 14
social impact