Alginate micro-bead production represents an interesting technological application in many fields such as pharmaceutical, food, and cosmetics. Usually the studies of micro droplet or micro-bead creation in micro channels formed in different geometries and different techniques (mostly T channel or flow-focusing) have been the subject of many research studies using pure, well characterized solutions and do not take into account the behavior and interaction of food grade and natural products. The possibility of using air as focusing flow [2] in microfluidic devices to produce sodium alginate micro-bead introduce some advantages; for example, the utilization of different focusing fluids like oil frequently requires complicate production processes, introducing a barrier to the interaction of alginate solution with the calcium ions during gelification phase and requiring a posteriori filtering and washing procedure. Moreover, direct immersion of liquid alginate drops in a calcium chloride bath to induce gelification usually happens at relatively high speed, inducing a bead shape deformation due to inertial effects. As in microfluidics details really matter, the geometry of the device represents an important issue: small changes in geometrical configuration, like coaxial misalignment could results in major changes in the dynamics of droplet formation. In this work such effects are investigated using numerical analysis.

Air Assisted Production of Alginate Beads Using Focusing Flow Microfluidic Devices: Numerical Modeling of Beads Formation

Marra F.;Sarghini F.
2018-01-01

Abstract

Alginate micro-bead production represents an interesting technological application in many fields such as pharmaceutical, food, and cosmetics. Usually the studies of micro droplet or micro-bead creation in micro channels formed in different geometries and different techniques (mostly T channel or flow-focusing) have been the subject of many research studies using pure, well characterized solutions and do not take into account the behavior and interaction of food grade and natural products. The possibility of using air as focusing flow [2] in microfluidic devices to produce sodium alginate micro-bead introduce some advantages; for example, the utilization of different focusing fluids like oil frequently requires complicate production processes, introducing a barrier to the interaction of alginate solution with the calcium ions during gelification phase and requiring a posteriori filtering and washing procedure. Moreover, direct immersion of liquid alginate drops in a calcium chloride bath to induce gelification usually happens at relatively high speed, inducing a bead shape deformation due to inertial effects. As in microfluidics details really matter, the geometry of the device represents an important issue: small changes in geometrical configuration, like coaxial misalignment could results in major changes in the dynamics of droplet formation. In this work such effects are investigated using numerical analysis.
2018
978-3-319-62026-8
978-3-319-62027-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4764186
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact