We have set up a Computational Fluid Dynamics (CFD) modeling, and performed a user evacuation model, for evaluating the risk level in one-way road tunnel tube when used for bi-directional traffic in particular circumstances. The simulations were carried out by considering both peak-hour traffic volumes during the day and off-peak hours overnight. The investigated one-way tube is ventilated by natural ventilation only, and has a length of less than 1000 m. With reference to the worst environmental conditions, which are downstream of the fire due to the direction of natural ventilation, the consequences on escaping users, caused by different types of burning vehicles located in various longitudinal positions along the tube, are shown. The results prove the positive effects on environmental conditions (in terms of temperature, visibility distance, CO and CO2 concentration) along the user evacuation path when the tube is used for bi-directional traffic at night rather than daytime. Only for the case of 100 MW fire and in the proximity of the exit portal, the last escaping user might be affected by a visibility distance and CO concentration exceeding the threshold values. In this special case, countermeasures for reducing smoke concentration or emergency services at the portals should be provided. However, the quantitative risk analysis, based on a probabilistic approach, showed that the F-N curve of the tube when used for bi-directional traffic with reference to the night always lies below that of the daytime, and the reduction in the risk level is between 80 and 100% for the night traffic compared to daytime one. It is to be focused on the fact that our modeling may represent a reference in investigating the effects of hourly traffic volumes on the risk level in tunnels and may help decisionmakers in understanding when to temporarily close a tube for maintenance, repair, or rehabilitation activities and use the adjacent tube for bi-directional traffic.

Risk Analysis of One-Way Road Tunnel Tube Used for Bi-Directional Traffic under Fire Scenarios

Caliendo Ciro
Supervision
;
Russo Isidoro
Software
;
Genovese Gianluca
Software
2021-01-01

Abstract

We have set up a Computational Fluid Dynamics (CFD) modeling, and performed a user evacuation model, for evaluating the risk level in one-way road tunnel tube when used for bi-directional traffic in particular circumstances. The simulations were carried out by considering both peak-hour traffic volumes during the day and off-peak hours overnight. The investigated one-way tube is ventilated by natural ventilation only, and has a length of less than 1000 m. With reference to the worst environmental conditions, which are downstream of the fire due to the direction of natural ventilation, the consequences on escaping users, caused by different types of burning vehicles located in various longitudinal positions along the tube, are shown. The results prove the positive effects on environmental conditions (in terms of temperature, visibility distance, CO and CO2 concentration) along the user evacuation path when the tube is used for bi-directional traffic at night rather than daytime. Only for the case of 100 MW fire and in the proximity of the exit portal, the last escaping user might be affected by a visibility distance and CO concentration exceeding the threshold values. In this special case, countermeasures for reducing smoke concentration or emergency services at the portals should be provided. However, the quantitative risk analysis, based on a probabilistic approach, showed that the F-N curve of the tube when used for bi-directional traffic with reference to the night always lies below that of the daytime, and the reduction in the risk level is between 80 and 100% for the night traffic compared to daytime one. It is to be focused on the fact that our modeling may represent a reference in investigating the effects of hourly traffic volumes on the risk level in tunnels and may help decisionmakers in understanding when to temporarily close a tube for maintenance, repair, or rehabilitation activities and use the adjacent tube for bi-directional traffic.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4764691
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact