The simplest delay differential equation describing the dynamics of non-lethal infectious diseases in a fixed-size population is extended to include the incubation period, as an additional delay parameter. It is observed that these types of deterministic models consist of one delay differential equation, whereas standard SIR and SEIR models consist of two and three ordinary differential equations, respectively. The extended model presents interesting peculiarities as, for example, initial oscillatory patterns in the curve counting the infectious individuals. A comparison of the doubly delayed differential equation with the standard SEIR model is made. It is argued that self-sustained oscillations, which are intrinsic properties of models with time delay, have to be taken into account in designing optimal epidemic containment strategies.

Memory effects and self-excited oscillations in deterministic epidemic models with intrinsic time delays

De Luca R.;Romeo F.
2020-01-01

Abstract

The simplest delay differential equation describing the dynamics of non-lethal infectious diseases in a fixed-size population is extended to include the incubation period, as an additional delay parameter. It is observed that these types of deterministic models consist of one delay differential equation, whereas standard SIR and SEIR models consist of two and three ordinary differential equations, respectively. The extended model presents interesting peculiarities as, for example, initial oscillatory patterns in the curve counting the infectious individuals. A comparison of the doubly delayed differential equation with the standard SEIR model is made. It is argued that self-sustained oscillations, which are intrinsic properties of models with time delay, have to be taken into account in designing optimal epidemic containment strategies.
2020
File in questo prodotto:
File Dimensione Formato  
DeLuca-Romeo2020_Article_MemoryEffectsAndSelf-excitedOs.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4768607
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact