Different tri-doped TiO2 photocatalysts (Fe-N-P/TiO2, Fe-N-S/TiO2, Fe-Pr-N/TiO2, Pr-N-S/TiO2, and P-N-S/TiO2 ) were successfully prepared and tested in the photocatalytic removal of thiacloprid (THI) under UV-A, visible, and direct solar light irradiation. The physical-chemical properties of the prepared catalysts were analyzed by different characterization techniques, revealing that dopants are effectively incorporated into the anatase TiO2 lattice, resulting in a decrease of the energy band gap. The reduction of photoluminescence intensity indicates a lower combination rate and longer lifespan of photogenerated carriers of all doped samples in comparison with the un-doped TiO2 . The doped photocatalysts not only significantly promote the photodegradation under UV-A light irradiation but also extend the optical response of TiO2 to visible light region, and consequently improve the visible light degradation of THI. Fe-N-P tri-doped TiO2 sample exhibits the highest THI photodegradation degree (64% under UV-A light, 29% under visible light and 73% under solar light).

Photocatalytic degradation of thiacloprid using tri-doped tio2 photocatalysts: A preliminary comparative study

Mancuso A.;Navarra W.;Sacco O.;Pragliola S.;Vaiano V.;Venditto V.
2021

Abstract

Different tri-doped TiO2 photocatalysts (Fe-N-P/TiO2, Fe-N-S/TiO2, Fe-Pr-N/TiO2, Pr-N-S/TiO2, and P-N-S/TiO2 ) were successfully prepared and tested in the photocatalytic removal of thiacloprid (THI) under UV-A, visible, and direct solar light irradiation. The physical-chemical properties of the prepared catalysts were analyzed by different characterization techniques, revealing that dopants are effectively incorporated into the anatase TiO2 lattice, resulting in a decrease of the energy band gap. The reduction of photoluminescence intensity indicates a lower combination rate and longer lifespan of photogenerated carriers of all doped samples in comparison with the un-doped TiO2 . The doped photocatalysts not only significantly promote the photodegradation under UV-A light irradiation but also extend the optical response of TiO2 to visible light region, and consequently improve the visible light degradation of THI. Fe-N-P tri-doped TiO2 sample exhibits the highest THI photodegradation degree (64% under UV-A light, 29% under visible light and 73% under solar light).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4769966
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact