Controlled delivery of human growth factors is still a challenge in tissue engineering protocols, and poly-lactic acid and poly-lactic-co-glycolic acid carriers have been recently proposed for this purpose. Here, the microencapsulation of two human growth factors, namely Growth Differentiation Factor −5 (hGDF-5) and Transforming Growth Factor β1 (hTGF-β1) was tested, by processing different emulsions with Supercritical Emulsion Extraction (SEE) technology. Polymer molecular weight, co-polymer ratio and surfactant amount in aqueous phases as well as phases mixing rate were varied to fabricate carriers with suitable size and loadings. Carriers with different mean sizes from 0.4 ± 0.09 μm up to 3 ± 0.9 μm were obtained by SEE technology when processing emulsions with different formulations; carriers were loaded with 3 μg/g and 7 μg/g for hGDF-5 and hTGF-β1 with controlled growth factor release over 25 days. Carriers displayed extremely low cytotoxicity when evaluated in Chinese Hamster Ovary cells (CHO-K1). Further, they also exhibited reduced cytotoxicity with respect to carriers obtained by conventional evaporation techniques, and low reactivity on human peripheral blood mononuclear cells (hPBMCs), suggesting their safety and potential use in tissue engineering protocols.

Supercritical emulsion extraction fabricated PLA/PLGA micro/nano carriers for growth factor delivery: Release profiles and cytotoxicity

Palazzo I.;Lamparelli E. P.;Ciardulli M. C.;Scala P.
Membro del Collaboration Group
;
Reverchon E.;Maffulli N.;Santoro A.;Della Porta G.
2021-01-01

Abstract

Controlled delivery of human growth factors is still a challenge in tissue engineering protocols, and poly-lactic acid and poly-lactic-co-glycolic acid carriers have been recently proposed for this purpose. Here, the microencapsulation of two human growth factors, namely Growth Differentiation Factor −5 (hGDF-5) and Transforming Growth Factor β1 (hTGF-β1) was tested, by processing different emulsions with Supercritical Emulsion Extraction (SEE) technology. Polymer molecular weight, co-polymer ratio and surfactant amount in aqueous phases as well as phases mixing rate were varied to fabricate carriers with suitable size and loadings. Carriers with different mean sizes from 0.4 ± 0.09 μm up to 3 ± 0.9 μm were obtained by SEE technology when processing emulsions with different formulations; carriers were loaded with 3 μg/g and 7 μg/g for hGDF-5 and hTGF-β1 with controlled growth factor release over 25 days. Carriers displayed extremely low cytotoxicity when evaluated in Chinese Hamster Ovary cells (CHO-K1). Further, they also exhibited reduced cytotoxicity with respect to carriers obtained by conventional evaporation techniques, and low reactivity on human peripheral blood mononuclear cells (hPBMCs), suggesting their safety and potential use in tissue engineering protocols.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4771982
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact