Hindi is the official language of India and used by a large population for several public services like postal, bank, judiciary, and public surveys. Efficient management of these services needs language-based automation. The proposed model addresses the problem of handwritten Hindi character recognition using a machine learning approach. The pre-trained DCNN models namely; InceptionV3-Net, VGG19-Net, and ResNet50 were used for the extraction of salient features from the characters’ images. A novel approach of fusion is adopted in the proposed work; the DCNN-based features are fused with the handcrafted features received from Bi-orthogonal discrete wavelet transform. The feature size was reduced by the Principal Component Analysis method. The hybrid features were examined with popular classifiers namely; Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM). The recognition cost was reduced by 84.37%. The model achieved significant scores of precision, recall, and F1-measure—98.78%, 98.67%, and 98.69%—with overall recognition accuracy of 98.73%.

A fusion-based hybrid-feature approach for recognition of unconstrained offline handwritten hindi characters

Siano P.
2021-01-01

Abstract

Hindi is the official language of India and used by a large population for several public services like postal, bank, judiciary, and public surveys. Efficient management of these services needs language-based automation. The proposed model addresses the problem of handwritten Hindi character recognition using a machine learning approach. The pre-trained DCNN models namely; InceptionV3-Net, VGG19-Net, and ResNet50 were used for the extraction of salient features from the characters’ images. A novel approach of fusion is adopted in the proposed work; the DCNN-based features are fused with the handcrafted features received from Bi-orthogonal discrete wavelet transform. The feature size was reduced by the Principal Component Analysis method. The hybrid features were examined with popular classifiers namely; Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM). The recognition cost was reduced by 84.37%. The model achieved significant scores of precision, recall, and F1-measure—98.78%, 98.67%, and 98.69%—with overall recognition accuracy of 98.73%.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4774608
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact