Demand response programs are useful options in reducing electricity price, congestion relief, load shifting, peak clipping, valley filling and resource adequacy from the system operator's viewpoint. For this purpose, many models of these programs have been developed. However, the availability of these resources has not been properly modeled in demand response models making them not practical for long-term studies such as in the resource adequacy problem where considering the providers' responding uncertainties is necessary for long-term studies. In this paper, a model considering providers' unavailability for unforced demand response programs has been developed. Temperature changes, equipment failures, simultaneous implementation of demand side management resources, popular TV programs and family visits are the main reasons that may affect the availability of the demand response providers to fulfill their commitments. The effectiveness of the proposed model has been demonstrated by numerical simulation.

Modeling of unforced demand response programs

Siano P.
2021-01-01

Abstract

Demand response programs are useful options in reducing electricity price, congestion relief, load shifting, peak clipping, valley filling and resource adequacy from the system operator's viewpoint. For this purpose, many models of these programs have been developed. However, the availability of these resources has not been properly modeled in demand response models making them not practical for long-term studies such as in the resource adequacy problem where considering the providers' responding uncertainties is necessary for long-term studies. In this paper, a model considering providers' unavailability for unforced demand response programs has been developed. Temperature changes, equipment failures, simultaneous implementation of demand side management resources, popular TV programs and family visits are the main reasons that may affect the availability of the demand response providers to fulfill their commitments. The effectiveness of the proposed model has been demonstrated by numerical simulation.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4774673
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact