The COVID-19 pandemic has affected all countries in the world and brings a major disruption in our daily lives. Estimation of the prevalence and contagiousness of COVID-19 infections may be challenging due to under-reporting of infected cases. For a better understanding of such pandemic in its early stages, it is crucial to take into consideration unreported infections. In this study we propose a truncation model to estimate the under-reporting probabilities for infected cases. Hypothesis testing on the differences in truncation probabilities, that are related to the under-reporting rates, is implemented. Large sample results of the hypothesis test are presented theoretically and by means of simulation studies. We also apply the methodology to COVID-19 data in certain countries, where under-reporting probabilities are expected to be high.

Truncation data analysis for the under-reporting probability in COVID-19 pandemic

Dai Hongsheng
;
Restaino Marialuisa
2021-01-01

Abstract

The COVID-19 pandemic has affected all countries in the world and brings a major disruption in our daily lives. Estimation of the prevalence and contagiousness of COVID-19 infections may be challenging due to under-reporting of infected cases. For a better understanding of such pandemic in its early stages, it is crucial to take into consideration unreported infections. In this study we propose a truncation model to estimate the under-reporting probabilities for infected cases. Hypothesis testing on the differences in truncation probabilities, that are related to the under-reporting rates, is implemented. Large sample results of the hypothesis test are presented theoretically and by means of simulation studies. We also apply the methodology to COVID-19 data in certain countries, where under-reporting probabilities are expected to be high.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4774922
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact