Background: Neoadjuvant folinic acid, fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) and chemoradiation have been used to downstage borderline and locally advanced pancreatic ductal adenocarcinoma (PDAC). Whether neoadjuvant therapy-induced tumor immune response contributes to the improved survival is unknown. Therefore, we evaluated whether neoadjuvant therapy induces an immune response towards PDAC. Methods: Clinicopathological variables were collected for surgically resected PDACs at the Massachusetts General Hospital (1998-2016). Neoadjuvant regimens included FOLFIRINOX with or without chemoradiation, proton chemoradiation (25 Gy), photon chemoradiation (50.4 Gy), or no neoadjuvant therapy. Human leukocyte antigen (HLA) class I and II expression and immune cell infiltration (CD4+, FoxP3+, CD8+, granzyme B+ cells, and M2 macrophages) were analyzed immunohistochemically and correlated with clinicopathologic variables. The antitumor immune response was compared among neoadjuvant therapy regimens. All statistical tests were 2-sided. Results: Two hundred forty-eight PDAC patients were included. The median age was 64 years and 50.0% were female. HLA-A defects were less frequent in the FOLFIRINOX cohort (P =. 006). HLA class II expression was lowest in photon and highest in proton patients (P =. 02). The FOLFIRINOX cohort exhibited the densest CD8+ cell infiltration (P <. 001). FOLFIRINOX and proton patients had the highest CD4+ and lowest T regulatory (FoxP3+) cell density, respectively. M2 macrophage density was statistically significantly higher in the treatment-naïve group (P <. 001) in which dense M2 macrophage infiltration was an independent predictor of poor overall survival. Conclusions: Neoadjuvant FOLFIRINOX with or without chemoradiation may induce immunologically relevant changes in the tumor microenvironment. It may reduce HLA-A defects, increase CD8+ cell density, and decrease T regulatory cell and M2 macrophage density. Therefore, neoadjuvant FOLFIRINOX therapy may benefit from combinations with checkpoint inhibitors, which can enhance patients' antitumor immune response.

Tumor Microenvironment Immune Response in Pancreatic Ductal Adenocarcinoma Patients Treated with Neoadjuvant Therapy

Sabbatino F.;
2021-01-01

Abstract

Background: Neoadjuvant folinic acid, fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) and chemoradiation have been used to downstage borderline and locally advanced pancreatic ductal adenocarcinoma (PDAC). Whether neoadjuvant therapy-induced tumor immune response contributes to the improved survival is unknown. Therefore, we evaluated whether neoadjuvant therapy induces an immune response towards PDAC. Methods: Clinicopathological variables were collected for surgically resected PDACs at the Massachusetts General Hospital (1998-2016). Neoadjuvant regimens included FOLFIRINOX with or without chemoradiation, proton chemoradiation (25 Gy), photon chemoradiation (50.4 Gy), or no neoadjuvant therapy. Human leukocyte antigen (HLA) class I and II expression and immune cell infiltration (CD4+, FoxP3+, CD8+, granzyme B+ cells, and M2 macrophages) were analyzed immunohistochemically and correlated with clinicopathologic variables. The antitumor immune response was compared among neoadjuvant therapy regimens. All statistical tests were 2-sided. Results: Two hundred forty-eight PDAC patients were included. The median age was 64 years and 50.0% were female. HLA-A defects were less frequent in the FOLFIRINOX cohort (P =. 006). HLA class II expression was lowest in photon and highest in proton patients (P =. 02). The FOLFIRINOX cohort exhibited the densest CD8+ cell infiltration (P <. 001). FOLFIRINOX and proton patients had the highest CD4+ and lowest T regulatory (FoxP3+) cell density, respectively. M2 macrophage density was statistically significantly higher in the treatment-naïve group (P <. 001) in which dense M2 macrophage infiltration was an independent predictor of poor overall survival. Conclusions: Neoadjuvant FOLFIRINOX with or without chemoradiation may induce immunologically relevant changes in the tumor microenvironment. It may reduce HLA-A defects, increase CD8+ cell density, and decrease T regulatory cell and M2 macrophage density. Therefore, neoadjuvant FOLFIRINOX therapy may benefit from combinations with checkpoint inhibitors, which can enhance patients' antitumor immune response.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4779262
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 37
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 48
social impact