In recent years there has been a significant rethinking of corporate management, which is increasingly based on customer orientation principles. As a matter of fact, customer relationship management processes and systems are ever more popular and crucial to facing today’s business challenges. However, the large number of available customer communication stimuli coming from different (direct and indirect) channels, require automatic language processing techniques to help filter and qualify such stimuli, determine priorities, facilitate the routing of requests and reduce the response times. In this scenario, sentiment analysis plays an important role in measuring customer satisfaction, tracking consumer opinion, interacting with consumers and building customer loyalty. The research described in this paper proposes an approach based on Hierarchical Attention Networks for detecting the sentiment polarity of customer communications. Unlike other existing approaches, after initial training, the defined model can improve over time during system operation using the feedback provided by CRM operators thanks to an integrated incremental learning mechanism. The paper also describes the developed prototype as well as the dataset used for training the model which includes over 30.000 annotated items. The results of two experiments aimed at measuring classifier performance and validating the retraining mechanism are also presented and discussed. In particular, the classifier accuracy turned out to be better than that of other algorithms for the supported languages (macro-averaged f1-score of 0.89 and 0.79 for Italian and English respectively) and the retraining mechanism was able to improve the classification accuracy on new samples without degrading the overall system performance.

Sentiment analysis for customer relationship management: an incremental learning approach

Ritrovato P.;
2021

Abstract

In recent years there has been a significant rethinking of corporate management, which is increasingly based on customer orientation principles. As a matter of fact, customer relationship management processes and systems are ever more popular and crucial to facing today’s business challenges. However, the large number of available customer communication stimuli coming from different (direct and indirect) channels, require automatic language processing techniques to help filter and qualify such stimuli, determine priorities, facilitate the routing of requests and reduce the response times. In this scenario, sentiment analysis plays an important role in measuring customer satisfaction, tracking consumer opinion, interacting with consumers and building customer loyalty. The research described in this paper proposes an approach based on Hierarchical Attention Networks for detecting the sentiment polarity of customer communications. Unlike other existing approaches, after initial training, the defined model can improve over time during system operation using the feedback provided by CRM operators thanks to an integrated incremental learning mechanism. The paper also describes the developed prototype as well as the dataset used for training the model which includes over 30.000 annotated items. The results of two experiments aimed at measuring classifier performance and validating the retraining mechanism are also presented and discussed. In particular, the classifier accuracy turned out to be better than that of other algorithms for the supported languages (macro-averaged f1-score of 0.89 and 0.79 for Italian and English respectively) and the retraining mechanism was able to improve the classification accuracy on new samples without degrading the overall system performance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4779984
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 6
social impact