Dendritic cells (DCs) represent a heterogeneous family of immune cells that link innate and adaptive immunity and their activation is linked to metabolic changes that are essential to support their activity and function. Hence, targeting the metabolism of DCs represents an opportunity to modify the inflammatory and immune response. Among the natural matrices, Humulus lupulus (Hop) compounds have recently been shown to exhibit immunomodulatory and anti-inflammatory activity. This study aimed to evaluate the ability of specific Hop fractions to modulate DCs metabolism after stimulation with lipopolysaccharide (LPS) by an untargeted metabolomics approach and compare their effect with flavonol quercetin. Following liquid chromatography-based fractionation, three fractions (A, B, and C) were obtained and tested. Cytokine and gene expression were evaluated using ELISA and qPCR, respectively, while the untargeted metabolomics analysis was performed using a combined HILIC-HRMS and DI-FT-ICR approach. The HOP C fraction and quercetin could both reduce the production of several inflammatory cytokines such as IL-6, IL-1α, IL-1β, and TNF, but differently from quercetin, the HOP C mechanism is independent of extracellular iron-sequestration and showed significant upregulation of the Nrf2/Nqo1 pathway and Ap-1 compared to quercetin. The untargeted analysis revealed the modulation of several key pathways linked to pro-inflammatory and glycolytic phenotypes. In particular, HOP C treatment could modulate the oxidative step of the pentose phosphate pathway (PPP) and reduce the inflammatory mediator succinate, citrulline, and purine-pyrimidine metabolism, differently from quercetin. These results highlight the potential anti-inflammatory mechanism of specific Hop-derived compounds in restoring the dysregulated metabolism in DCs, which can be used in preventive or adjuvant therapies to suppress the undesirable inflammatory response.

Hop-derived fraction rich in beta acids and prenylflavonoids regulates the inflammatory response in dendritic cells differently from quercetin: Unveiling metabolic changes by mass spectrometry-based metabolomics

Sommella E.;Verna G.;Salviati E.;Esposito T.;Carbone D.;Chieppa M.;Campiglia P.
2021-01-01

Abstract

Dendritic cells (DCs) represent a heterogeneous family of immune cells that link innate and adaptive immunity and their activation is linked to metabolic changes that are essential to support their activity and function. Hence, targeting the metabolism of DCs represents an opportunity to modify the inflammatory and immune response. Among the natural matrices, Humulus lupulus (Hop) compounds have recently been shown to exhibit immunomodulatory and anti-inflammatory activity. This study aimed to evaluate the ability of specific Hop fractions to modulate DCs metabolism after stimulation with lipopolysaccharide (LPS) by an untargeted metabolomics approach and compare their effect with flavonol quercetin. Following liquid chromatography-based fractionation, three fractions (A, B, and C) were obtained and tested. Cytokine and gene expression were evaluated using ELISA and qPCR, respectively, while the untargeted metabolomics analysis was performed using a combined HILIC-HRMS and DI-FT-ICR approach. The HOP C fraction and quercetin could both reduce the production of several inflammatory cytokines such as IL-6, IL-1α, IL-1β, and TNF, but differently from quercetin, the HOP C mechanism is independent of extracellular iron-sequestration and showed significant upregulation of the Nrf2/Nqo1 pathway and Ap-1 compared to quercetin. The untargeted analysis revealed the modulation of several key pathways linked to pro-inflammatory and glycolytic phenotypes. In particular, HOP C treatment could modulate the oxidative step of the pentose phosphate pathway (PPP) and reduce the inflammatory mediator succinate, citrulline, and purine-pyrimidine metabolism, differently from quercetin. These results highlight the potential anti-inflammatory mechanism of specific Hop-derived compounds in restoring the dysregulated metabolism in DCs, which can be used in preventive or adjuvant therapies to suppress the undesirable inflammatory response.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4780409
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact