Well‐designed energy management strategies are essential for the good operation of Hybrid Electric Vehicles (HEVs) in terms of fuel economy and pollutant emissions reduction, regardless of the specific powertrain architecture. The goal of this paper is to propose two innovative supervisory control strategies for HEVs derived from different optimization algorithms and to assess HEVs’ fuel consumption reduction (compared to conventional vehicles). These approaches are derived from the literature and modified by the authors to present novel algorithms for the optimization problem. One is based on Dynamic Programming (DP), here referred to as the Forward Approach to Dynamic Programming (FADP) and introduces a different implementation of the DP to achieve computational and accuracy benefits. The other is based on the Equivalent Consumption Minimization Strategy (ECMS) approach, and it adapts to the latest driving conditions using information gathered in a finite‐length backward‐looking horizon. These techniques are used to achieve the optimal power share between the thermal engine and the battery of a parallel HEV. Their performances are compared and analysed in terms of achieved fuel economy and computational time with respect to conventional DP and Pontryagin’s Minimum Principle (PMP) approaches.

Novel Approaches for Energy Management Strategies of Hybrid Electric Vehicles and Comparison with Conventional Solutions

Donatantonio F.;Ferrara A.;Polverino P.
;
Pianese C.
2022

Abstract

Well‐designed energy management strategies are essential for the good operation of Hybrid Electric Vehicles (HEVs) in terms of fuel economy and pollutant emissions reduction, regardless of the specific powertrain architecture. The goal of this paper is to propose two innovative supervisory control strategies for HEVs derived from different optimization algorithms and to assess HEVs’ fuel consumption reduction (compared to conventional vehicles). These approaches are derived from the literature and modified by the authors to present novel algorithms for the optimization problem. One is based on Dynamic Programming (DP), here referred to as the Forward Approach to Dynamic Programming (FADP) and introduces a different implementation of the DP to achieve computational and accuracy benefits. The other is based on the Equivalent Consumption Minimization Strategy (ECMS) approach, and it adapts to the latest driving conditions using information gathered in a finite‐length backward‐looking horizon. These techniques are used to achieve the optimal power share between the thermal engine and the battery of a parallel HEV. Their performances are compared and analysed in terms of achieved fuel economy and computational time with respect to conventional DP and Pontryagin’s Minimum Principle (PMP) approaches.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4782903
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact