We discuss exchangeability and independence in the setting of sigma-complete Riesz MV-algebras. We define and link to each other the notions of exchangeability and distribution law for a sequence of observables (i.e. non classical random variables), as well as the notion of independence for a sequence of algebras. We obtain two categorical dualities for sigma-complete Riesz MV-algebras endowed with states and we define a "canonical" state on the coproduct of a sequence of probability Riesz tribes, giving a weak version of de Finetti's result. Finally, we discuss statistical models.

Models, coproducts and exchangeability: Notes on states on Baire functions

Lapenta, S
;
Lenzi, G
2022

Abstract

We discuss exchangeability and independence in the setting of sigma-complete Riesz MV-algebras. We define and link to each other the notions of exchangeability and distribution law for a sequence of observables (i.e. non classical random variables), as well as the notion of independence for a sequence of algebras. We obtain two categorical dualities for sigma-complete Riesz MV-algebras endowed with states and we define a "canonical" state on the coproduct of a sequence of probability Riesz tribes, giving a weak version of de Finetti's result. Finally, we discuss statistical models.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4802871
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact