The paper proposes a traffic responsive control framework based on a Model Predictive Control (MPC) approach. The framework focuses on a centralized method, which can simultaneously compute the network decision variables (i.e., the green timings at each junction and the offset of the traffic light plans of the network). Furthermore, the framework is based on a hybrid traffic flow model operating as a prediction model and plant model in the control procedure. The hybrid traffic flow model combines two sub-models: an aggregate model (i.e., the Cell Transmission Model; CTM) and a disaggregate model (i.e., the Cellular Automata model; CA), using a transition cell to connect them. The whole framework is tested on a signalized arterial, performing several analyses to calibrate the MPC strategy and evaluate the traffic control approach using fixed and adaptive control strategies. All analyses are made in terms of total time spent, network total delay, queue lengths and degree of saturation.

A traffic responsive control framework for signalized junctions based on hybrid traffic flow representation

Storani F.;Di Pace R.
;
2022-01-01

Abstract

The paper proposes a traffic responsive control framework based on a Model Predictive Control (MPC) approach. The framework focuses on a centralized method, which can simultaneously compute the network decision variables (i.e., the green timings at each junction and the offset of the traffic light plans of the network). Furthermore, the framework is based on a hybrid traffic flow model operating as a prediction model and plant model in the control procedure. The hybrid traffic flow model combines two sub-models: an aggregate model (i.e., the Cell Transmission Model; CTM) and a disaggregate model (i.e., the Cellular Automata model; CA), using a transition cell to connect them. The whole framework is tested on a signalized arterial, performing several analyses to calibrate the MPC strategy and evaluate the traffic control approach using fixed and adaptive control strategies. All analyses are made in terms of total time spent, network total delay, queue lengths and degree of saturation.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4805365
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact