This paper analyzes the numerical stability of a class of two-step spline collocation methods for initial value problems for fractional differential equations. The stability region is characterized in terms of the eigenvalues of a power series, which depends on the method parameters. We provide the stability regions for several choices of the method parameters. Numerical experiments prove the effectiveness of the stability results both in a constant stepsize framework and in the case of graded meshes.

Stability of two-step spline collocation methods for initial value problems for fractional differential equations

Cardone A.
;
Conte D.;Paternoster B.
2022

Abstract

This paper analyzes the numerical stability of a class of two-step spline collocation methods for initial value problems for fractional differential equations. The stability region is characterized in terms of the eigenvalues of a power series, which depends on the method parameters. We provide the stability regions for several choices of the method parameters. Numerical experiments prove the effectiveness of the stability results both in a constant stepsize framework and in the case of graded meshes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4808592
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact