We consider a generalisation of the Basilica group to all odd primes: the p-Basilica groups acting on the p-adic tree. We show that the p-Basilica groups have the p-congruence subgroup property but not the congruence subgroup property nor the weak congruence subgroup property. This provides the first examples of weakly branch groups with such properties. In addition, the p-Basilica groups give the first examples of weakly branch, but not branch, groups which are super strongly fractal. We compute the orders of the congruence quotients of these groups, which enable us to determine the Hausdorff dimensions of the p-Basilica groups. Lastly, we show that the p-Basilica groups do not possess maximal subgroups of infinite index and that they have infinitely many non-normal maximal subgroups.

p-Basilica Groups

Di Domenico E.;Fernandez-Alcober G. A.;Noce M.
;
2022-01-01

Abstract

We consider a generalisation of the Basilica group to all odd primes: the p-Basilica groups acting on the p-adic tree. We show that the p-Basilica groups have the p-congruence subgroup property but not the congruence subgroup property nor the weak congruence subgroup property. This provides the first examples of weakly branch groups with such properties. In addition, the p-Basilica groups give the first examples of weakly branch, but not branch, groups which are super strongly fractal. We compute the orders of the congruence quotients of these groups, which enable us to determine the Hausdorff dimensions of the p-Basilica groups. Lastly, we show that the p-Basilica groups do not possess maximal subgroups of infinite index and that they have infinitely many non-normal maximal subgroups.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4809331
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact