This paper explores the topic of the energy transition in housing. The work aims to offer a knowledge base for energy policy on the current scenario of the energy redevelopment of Italian multi-family buildings. The financial feasibility of energy retrofit projects in the case of multi-apartment buildings is then analyzed. From a set of projects located in the Campania region (Italy), the typical building on which to carry out ordinary energy efficiency works was identified. Two design variants are considered on which to implement the Cost-Revenue Analysis (CRA): (i) energy retrofit intervention not including photovoltaic system; (ii) energy retrofit intervention including photovoltaic system. For the second design variant, further analyses were conducted (sensitivity analysis, scenario analysis, risk analysis) to identify the main sensitive variables and to estimate the probability of financial failure of the intervention. The study shows that interventions without photovoltaics are unlikely to be financially sustainable. However, although the presence of photovoltaics significantly increases the savings in the bill, the Payback Period (PP) remains quite high. An ordinary energy retrofit project including photovoltaic technology can be made financially sustainable only by resorting to government building bonuses, in the absence of which the probability of failure is 46%.

Financial Impacts of the Energy Transition in Housing

Luigi Dolores
;
Maria Macchiaroli;Gianluigi De Mare
2022-01-01

Abstract

This paper explores the topic of the energy transition in housing. The work aims to offer a knowledge base for energy policy on the current scenario of the energy redevelopment of Italian multi-family buildings. The financial feasibility of energy retrofit projects in the case of multi-apartment buildings is then analyzed. From a set of projects located in the Campania region (Italy), the typical building on which to carry out ordinary energy efficiency works was identified. Two design variants are considered on which to implement the Cost-Revenue Analysis (CRA): (i) energy retrofit intervention not including photovoltaic system; (ii) energy retrofit intervention including photovoltaic system. For the second design variant, further analyses were conducted (sensitivity analysis, scenario analysis, risk analysis) to identify the main sensitive variables and to estimate the probability of financial failure of the intervention. The study shows that interventions without photovoltaics are unlikely to be financially sustainable. However, although the presence of photovoltaics significantly increases the savings in the bill, the Payback Period (PP) remains quite high. An ordinary energy retrofit project including photovoltaic technology can be made financially sustainable only by resorting to government building bonuses, in the absence of which the probability of failure is 46%.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4811419
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 7
social impact