We are interested in a reduced model for corrosion of iron, in which ferric cations and electrons evolve in a fixed oxide layer subject to a self-consistent electrostatic potential. Reactions at the boundaries are modeled thanks to Butler-Volmer formulas, whereas the boundary conditions on the electrostatic potential model capacitors located at the interfaces between the materials. Our model takes inspiration in existing papers, to which we bring slight modifications in order to make it consistent with thermodynamics and its second principle. Building on a free energy estimate, we establish the global in time existence of a solution to the problem without any restriction on the physical parameters, in opposition to previous works. The proof further relies on uniform estimates on the chemical potentials that are obtained thanks to Moser iterations. Numerical illustrations are finally provided to highlight the similarities and the differences between our new model and the one previously studied in the literature.

Mathematical analysis of a thermodynamically consistent reduced model for iron corrosion

Federica Raimondi;
2022-01-01

Abstract

We are interested in a reduced model for corrosion of iron, in which ferric cations and electrons evolve in a fixed oxide layer subject to a self-consistent electrostatic potential. Reactions at the boundaries are modeled thanks to Butler-Volmer formulas, whereas the boundary conditions on the electrostatic potential model capacitors located at the interfaces between the materials. Our model takes inspiration in existing papers, to which we bring slight modifications in order to make it consistent with thermodynamics and its second principle. Building on a free energy estimate, we establish the global in time existence of a solution to the problem without any restriction on the physical parameters, in opposition to previous works. The proof further relies on uniform estimates on the chemical potentials that are obtained thanks to Moser iterations. Numerical illustrations are finally provided to highlight the similarities and the differences between our new model and the one previously studied in the literature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4811556
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact