Wnt/β-catenin signaling plays an important role in the regulation of embryonic development and tumorigenesis. Since its deregulation results in severe human diseases, especially cancer, the Wnt signaling pathway constitutes a promising platform for pharmacological targeting of cancer. In this study we synthesized a series of imidazo[1,2-a]pyrimidines and imidazo[1,2-a]pyridines and identified some derivatives that were able to inhibit the Wnt/β-catenin signaling pathway in a luciferase reporter assay and cell proliferation in selected cancer cell lines, endowed with APC or β-catenin gene mutations. The most active compounds significantly downregulate the expression of Wnt target genes such as c-myc and cyclin D1. Further studies indicated that these compounds function independently of GSK-3β activity. More importantly, in vivo experiments, carried out on a Wnt-reporter zebrafish model indicate, in particular for compounds 4c and 4i as the most active compounds, an activity comparable to that of the reference compound IWR1, suggesting their potential use not only as small molecule inhibitors of the Wnt/β-catenin signal in Wnt driven cancers, but also in other Wnt-related diseases.

Synthesis and biological evaluation of imidazo[1,2-a]pyrimidines and imidazo[1,2-a]pyridines as new inhibitors of the Wnt/β-catenin signaling

OSTACOLO, CARMINE;
2014-01-01

Abstract

Wnt/β-catenin signaling plays an important role in the regulation of embryonic development and tumorigenesis. Since its deregulation results in severe human diseases, especially cancer, the Wnt signaling pathway constitutes a promising platform for pharmacological targeting of cancer. In this study we synthesized a series of imidazo[1,2-a]pyrimidines and imidazo[1,2-a]pyridines and identified some derivatives that were able to inhibit the Wnt/β-catenin signaling pathway in a luciferase reporter assay and cell proliferation in selected cancer cell lines, endowed with APC or β-catenin gene mutations. The most active compounds significantly downregulate the expression of Wnt target genes such as c-myc and cyclin D1. Further studies indicated that these compounds function independently of GSK-3β activity. More importantly, in vivo experiments, carried out on a Wnt-reporter zebrafish model indicate, in particular for compounds 4c and 4i as the most active compounds, an activity comparable to that of the reference compound IWR1, suggesting their potential use not only as small molecule inhibitors of the Wnt/β-catenin signal in Wnt driven cancers, but also in other Wnt-related diseases.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4812076
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact