In this paper, a bi-level optimization model including the problem of transmission network market and energy management in the distribution substation is presented. In the proposed bi-level model, the lower level includes the demand-side management (DSM) program and the optimal charge/discharge of large-scale energy storage system (LSESS) at distribution substations to increase grid profits and send decisions to the upper-level transmission market operator. The upper level of the proposed model is a security-constrained unit commitment (SCUC) to minimize production, no-load, startup, shutdown, and active power curtailment costs, and also the unavailability of the generation units. In this paper, to solve the bi-level optimization problem, the Karush-Kuhn-Tucker (KKT) equation modeling method will be used to turn the problem into a single-level problem. One of the advantages of converting a bi-level model to a single-level model compared to the methods of the decomposition algorithms is the lack of use of iterative algorithms, which leads to an increase in problem-solving time. The proposed model is tested on standard distribution substations and transmission networks, which shows that the proposed method is more effective than decomposition algorithms in terms of problem-solving time. The simulation results showed that the proposed method can be more efficient in large optimization problems.

Transmission and Distribution Substation Energy Management Considering Large-Scale Energy Storage, Demand Side Management and Security-Constrained Unit Commitment

Siano P.
2022-01-01

Abstract

In this paper, a bi-level optimization model including the problem of transmission network market and energy management in the distribution substation is presented. In the proposed bi-level model, the lower level includes the demand-side management (DSM) program and the optimal charge/discharge of large-scale energy storage system (LSESS) at distribution substations to increase grid profits and send decisions to the upper-level transmission market operator. The upper level of the proposed model is a security-constrained unit commitment (SCUC) to minimize production, no-load, startup, shutdown, and active power curtailment costs, and also the unavailability of the generation units. In this paper, to solve the bi-level optimization problem, the Karush-Kuhn-Tucker (KKT) equation modeling method will be used to turn the problem into a single-level problem. One of the advantages of converting a bi-level model to a single-level model compared to the methods of the decomposition algorithms is the lack of use of iterative algorithms, which leads to an increase in problem-solving time. The proposed model is tested on standard distribution substations and transmission networks, which shows that the proposed method is more effective than decomposition algorithms in terms of problem-solving time. The simulation results showed that the proposed method can be more efficient in large optimization problems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4812711
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact