We reconstruct the radial profile of the projected gravitational potential of the galaxy cluster MACS J1206 from 592 spectroscopic measurements of velocities of cluster members. To accomplish this, we use a method we have developed recently based on the Richardson-Lucy deprojection algorithm and an inversion of the spherically-symmetric Jeans equation. We find that, within the uncertainties, our reconstruction agrees very well with a potential reconstruction from weak and strong gravitational lensing as well as with a potential obtained from X-ray measurements. In addition, our reconstruction is in good agreement with several common analytic profiles of the lensing potential. Varying the anisotropy parameter in the Jeans equation, we find that isotropy parameters, which are either small, beta less than or similar to 0.2, or decrease with radius, yield potential profiles that strongly disagree with that obtained from gravitational lensing. We achieve the best agreement between our potential profile and the profile from gravitational lensing if the anisotropy parameter rises steeply to beta approximate to 0.6 within approximate to 0.5Mpc and stays constant further out.

The projected gravitational potential of the galaxy cluster MACS J1206 derived from galaxy kinematics

Mercurio A;
2015-01-01

Abstract

We reconstruct the radial profile of the projected gravitational potential of the galaxy cluster MACS J1206 from 592 spectroscopic measurements of velocities of cluster members. To accomplish this, we use a method we have developed recently based on the Richardson-Lucy deprojection algorithm and an inversion of the spherically-symmetric Jeans equation. We find that, within the uncertainties, our reconstruction agrees very well with a potential reconstruction from weak and strong gravitational lensing as well as with a potential obtained from X-ray measurements. In addition, our reconstruction is in good agreement with several common analytic profiles of the lensing potential. Varying the anisotropy parameter in the Jeans equation, we find that isotropy parameters, which are either small, beta less than or similar to 0.2, or decrease with radius, yield potential profiles that strongly disagree with that obtained from gravitational lensing. We achieve the best agreement between our potential profile and the profile from gravitational lensing if the anisotropy parameter rises steeply to beta approximate to 0.6 within approximate to 0.5Mpc and stays constant further out.
2015
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4814942
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact