We present an improved determination of the total mass distribution of three massive clusters from the Cluster Lensing and Supernova Survey with Hubble and Hubble Frontier Fields, MACS J1206.2 0847 (z = 0.44), MACS J0416.1 2403 (z = 0.40), Abell S1063 (z = 0.35). We specifically reconstructed the sub-halo mass component with robust stellar kinematics information of cluster galaxies, in combination with precise strong lensing models based on large samples of spectroscopically identified multiple images. We used integral-field spectroscopy in the cluster cores, from the Multi Unit Spectroscopic Explorer on the Very Large Telescope, to measure the stellar velocity dispersion, sigma, of 40 60 member galaxies per cluster, covering four to five magnitudes to m(F160W) similar or equal to 21.5. We verified the robustness and quantified the accuracy of the velocity dispersion measurements with extensive spectral simulations. With these data, we determined the normalization and slope of the galaxy L-sigma Faber-Jackson relation in each cluster and used these parameters as a prior for the scaling relations of the sub-halo population in the mass distribution modeling. When compared to our previous lens models, the inclusion of member galaxies' kinematics provides a similar precision in reproducing the positions of the multiple images. However, the inherent degeneracy between the central effective velocity dispersion, sigma(0), and truncation radius, r(cut), of sub-halos is strongly reduced, thus significantly alleviating possible systematics in the measurements of sub-halo masses. The three independent determinations of the sigma(0)-r(cut) scaling relation in each cluster are found to be fully consistent, enabling a statistical determination of sub-halo sizes as a function of sigma(0), or halo masses. Finally, we derived the galaxy central velocity dispersion functions of the three clusters projected within 16% of their virial radius, finding that they are well in agreement with each other. We argue that such a methodology, when applied to high-quality kinematics and strong lensing data, allows the sub-halo mass functions to be determined and compared with those obtained from cosmological simulations.

Enhanced cluster lensing models with measured galaxy kinematics

Mercurio A;
2019-01-01

Abstract

We present an improved determination of the total mass distribution of three massive clusters from the Cluster Lensing and Supernova Survey with Hubble and Hubble Frontier Fields, MACS J1206.2 0847 (z = 0.44), MACS J0416.1 2403 (z = 0.40), Abell S1063 (z = 0.35). We specifically reconstructed the sub-halo mass component with robust stellar kinematics information of cluster galaxies, in combination with precise strong lensing models based on large samples of spectroscopically identified multiple images. We used integral-field spectroscopy in the cluster cores, from the Multi Unit Spectroscopic Explorer on the Very Large Telescope, to measure the stellar velocity dispersion, sigma, of 40 60 member galaxies per cluster, covering four to five magnitudes to m(F160W) similar or equal to 21.5. We verified the robustness and quantified the accuracy of the velocity dispersion measurements with extensive spectral simulations. With these data, we determined the normalization and slope of the galaxy L-sigma Faber-Jackson relation in each cluster and used these parameters as a prior for the scaling relations of the sub-halo population in the mass distribution modeling. When compared to our previous lens models, the inclusion of member galaxies' kinematics provides a similar precision in reproducing the positions of the multiple images. However, the inherent degeneracy between the central effective velocity dispersion, sigma(0), and truncation radius, r(cut), of sub-halos is strongly reduced, thus significantly alleviating possible systematics in the measurements of sub-halo masses. The three independent determinations of the sigma(0)-r(cut) scaling relation in each cluster are found to be fully consistent, enabling a statistical determination of sub-halo sizes as a function of sigma(0), or halo masses. Finally, we derived the galaxy central velocity dispersion functions of the three clusters projected within 16% of their virial radius, finding that they are well in agreement with each other. We argue that such a methodology, when applied to high-quality kinematics and strong lensing data, allows the sub-halo mass functions to be determined and compared with those obtained from cosmological simulations.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4815305
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 46
social impact