In this paper we state the following weighted Hardy type inequality for any functions $\varphi$ in a weighted Sobolev space and for weight functions $\mu$ of a quite general type \begin{equation*} c_{N,\mu} \int_{\R^N}V\,\varphi^2\mu(x)dx\le \int_{\R^N}|\nabla \varphi|^2\mu(x)dx +C_\mu \int_{\R^N}W \varphi^2\mu(x)dx, \end{equation*} where $V$ is a multipolar potential and $W$ is a bounded function from above depending on $\mu$. Our method is based on introducing a suitable vector-valued function and an integral identity that we state in the paper. We prove that the constant $c_{N,\mu}$ in the estimate is optimal by building a suitable sequence of functions.

Multipolar potentials and weighted Hardy inequalities

Anna Canale
2024-01-01

Abstract

In this paper we state the following weighted Hardy type inequality for any functions $\varphi$ in a weighted Sobolev space and for weight functions $\mu$ of a quite general type \begin{equation*} c_{N,\mu} \int_{\R^N}V\,\varphi^2\mu(x)dx\le \int_{\R^N}|\nabla \varphi|^2\mu(x)dx +C_\mu \int_{\R^N}W \varphi^2\mu(x)dx, \end{equation*} where $V$ is a multipolar potential and $W$ is a bounded function from above depending on $\mu$. Our method is based on introducing a suitable vector-valued function and an integral identity that we state in the paper. We prove that the constant $c_{N,\mu}$ in the estimate is optimal by building a suitable sequence of functions.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4819611
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact