Measurements and characterization for extremely harsh environments require accurate approach especially by means of image-based computer vision. Because of harsh conditions, such as high temperature, pollution, turbulences, radioactive exposure, high energy, direct measurements through conventional sensors are not easy even with recent sensing technologies. Live and/or shortest time-delayed sensing, by means of imaging, can come to help to overcome the aforementioned constraints. The paper outilines the use of sensed images for characterizing the effects of high temperatures, at the inlet of a blast furnace, during the discharge of materials using a chute. This latter is subject to wear due to chemico-physical reactions at around 350-450 degrees C. Given the specific application related to the harsh environment, two algorithms are comparatively proposed and updated for the purposes of the paper; they are based both on computer vision, namely monadic technique and conventional neural network. For the first technique, virtual sensors have been introduced within the image thanks to sinogram and backprojection subtechniques. The results highlight the effects of the environment on the layers of anti-wear compounds applied on the chute, then they permit to understand the chute life-cycle. Quantitative percentage of material detection has been included as well as specific metrics for machine learning expression.

Computer Vision for Sensed Images Approach in Extremely Harsh Environments: Blast Furnace Chute Wear Characterization

Pietrosanto, A
2021-01-01

Abstract

Measurements and characterization for extremely harsh environments require accurate approach especially by means of image-based computer vision. Because of harsh conditions, such as high temperature, pollution, turbulences, radioactive exposure, high energy, direct measurements through conventional sensors are not easy even with recent sensing technologies. Live and/or shortest time-delayed sensing, by means of imaging, can come to help to overcome the aforementioned constraints. The paper outilines the use of sensed images for characterizing the effects of high temperatures, at the inlet of a blast furnace, during the discharge of materials using a chute. This latter is subject to wear due to chemico-physical reactions at around 350-450 degrees C. Given the specific application related to the harsh environment, two algorithms are comparatively proposed and updated for the purposes of the paper; they are based both on computer vision, namely monadic technique and conventional neural network. For the first technique, virtual sensors have been introduced within the image thanks to sinogram and backprojection subtechniques. The results highlight the effects of the environment on the layers of anti-wear compounds applied on the chute, then they permit to understand the chute life-cycle. Quantitative percentage of material detection has been included as well as specific metrics for machine learning expression.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4827816
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact