Ethical concerns about stem cell-based research have delayed important advances in many areas of medicine, including cardiology. The introduction of induced pluripotent stem cells (iPSCs) has supplanted the need to use human stem cells for most purposes, thus eliminating all ethical controversies. Since then, many new avenues have been opened in cardiology research, not only in approaches to tissue replacement but also in the design and testing of antiarrhythmic drugs. This methodology has advanced to the point where induced human cardiomyocyte cell lines can now also be obtained from commercial sources or tissue banks. Initial studies with readily available iPSCs have generally confirmed that their behavioral characteristics accurately predict the behavior of beating cardiomyocytes in vivo. As a result, iPSCs can provide new ways to study arrhythmias and heart disease in general, accelerating the development of new, more effective antiarrhythmic drugs, clinical diagnoses, and personalized medical care. The focus on producing cardiomyocytes that can be used to replace damaged heart tissue has somewhat diverted interest in a host of other applications. This manuscript is intended to provide non-specialists with a brief introduction and overview of the research carried out in the field of heart rhythm disorders.

Role of induced pluripotent stem cells in diagnostic cardiology

Santurro, Alessandro;
2021-01-01

Abstract

Ethical concerns about stem cell-based research have delayed important advances in many areas of medicine, including cardiology. The introduction of induced pluripotent stem cells (iPSCs) has supplanted the need to use human stem cells for most purposes, thus eliminating all ethical controversies. Since then, many new avenues have been opened in cardiology research, not only in approaches to tissue replacement but also in the design and testing of antiarrhythmic drugs. This methodology has advanced to the point where induced human cardiomyocyte cell lines can now also be obtained from commercial sources or tissue banks. Initial studies with readily available iPSCs have generally confirmed that their behavioral characteristics accurately predict the behavior of beating cardiomyocytes in vivo. As a result, iPSCs can provide new ways to study arrhythmias and heart disease in general, accelerating the development of new, more effective antiarrhythmic drugs, clinical diagnoses, and personalized medical care. The focus on producing cardiomyocytes that can be used to replace damaged heart tissue has somewhat diverted interest in a host of other applications. This manuscript is intended to provide non-specialists with a brief introduction and overview of the research carried out in the field of heart rhythm disorders.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4828179
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact