The AC magnetic properties of a sample of Fe3O4 nanoparticles coated with oleic acid have been investigated with the help of AC susceptibility measurements. In particular, several DC magnetic fields have been superimposed on the AC field, and their effect on the magnetic response of the sample has been analysed. The results show the presence of a double peak structure in the imaginary component of the complex AC susceptibility measured as a function of the temperature. A preliminary evaluation of the Mydosh parameter for both peaks gives the information that each one of them is associated with a different state of interaction between nanoparticles. The two peaks evolve both in amplitude and position when the intensity of the DC field is changed. The field dependence of the peak position shows two different trends, and it is possible to study them in the framework of the currently existing theoretical models. In particular, a model of non-interacting magnetic nanoparticles has been used to describe the behaviour of the peak at lower temperatures, whereas the behaviour of the peak at higher temperatures has been analysed in the framework of a spin-glass-like model. The proposed analysis technique can be useful for the characterisation of magnetic nanoparticles used in several types of applications, such as biomedical and magnetic fluids.

The Effect of a DC Magnetic Field on the AC Magnetic Properties of Oleic Acid-Coated Fe3O4 Nanoparticles

Modestino, Michele
Writing – Original Draft Preparation
;
Galluzzi, Armando
Investigation
;
Sarno, Maria
Writing – Review & Editing
;
Polichetti, Massimiliano
Supervision
2023-01-01

Abstract

The AC magnetic properties of a sample of Fe3O4 nanoparticles coated with oleic acid have been investigated with the help of AC susceptibility measurements. In particular, several DC magnetic fields have been superimposed on the AC field, and their effect on the magnetic response of the sample has been analysed. The results show the presence of a double peak structure in the imaginary component of the complex AC susceptibility measured as a function of the temperature. A preliminary evaluation of the Mydosh parameter for both peaks gives the information that each one of them is associated with a different state of interaction between nanoparticles. The two peaks evolve both in amplitude and position when the intensity of the DC field is changed. The field dependence of the peak position shows two different trends, and it is possible to study them in the framework of the currently existing theoretical models. In particular, a model of non-interacting magnetic nanoparticles has been used to describe the behaviour of the peak at lower temperatures, whereas the behaviour of the peak at higher temperatures has been analysed in the framework of a spin-glass-like model. The proposed analysis technique can be useful for the characterisation of magnetic nanoparticles used in several types of applications, such as biomedical and magnetic fluids.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4829371
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact