. We design and study splitting integrators for the temporal discretization of the stochastic FitzHugh-Nagumo system. This system is a model for signal propagation in nerve cells where the voltage variable is the solution of a one-dimensional parabolic PDE with a cubic nonlinearity driven by additive space-time white noise. We first show that the numerical solutions have finite moments. We then prove that the splitting schemes have, at least, the strong rate of convergence 1/4. Finally, numerical experiments illustrating the performance of the splitting schemes are provided.
SPLITTING SCHEMES FOR FITZHUGH-NAGUMO STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
Giordano, G
2023-01-01
Abstract
. We design and study splitting integrators for the temporal discretization of the stochastic FitzHugh-Nagumo system. This system is a model for signal propagation in nerve cells where the voltage variable is the solution of a one-dimensional parabolic PDE with a cubic nonlinearity driven by additive space-time white noise. We first show that the numerical solutions have finite moments. We then prove that the splitting schemes have, at least, the strong rate of convergence 1/4. Finally, numerical experiments illustrating the performance of the splitting schemes are provided.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.