An effective, probe-compensated, phaseless Near-Field-Far-Field (NF-FF) transformation technique with planar spiral scanning is presented. The phase retrieval problem is solved by a quadratic inverse process, whose data are the voltage squared amplitudes of the NF samples acquired on two scanning surfaces. The available information on the antenna under test and on the scanning geometry are used to provide efficient representations for both the unknowns and the data, thus improving the accuracy and reliability of the technique. Furthermore, disconnected apertures are dealt with by adopting two different sets of prolate spheroidal wave functions to represent the aperture fields. Experimental results are reported to assess the effectiveness of the proposed approach. A drastic reduction (about 90%) of the required NF samples, as compared to standard lambda/4 measurements (lambda being the wavelength), is observed. Aggregating the measurements on the two scanning surfaces, the technique uses less samples even when compared to the case of complex, lambda/2 measurements performed on a single surface. Our approach exhibits an accuracy comparable to that achieved when adopting complex measurements with non-redundant sampling or classical, lambda/2 plane-rectangular NF-FF transformations.

Experimental validation of a phaseless, non-redundant planar spiral scanning for antenna characterisation

Bevilacqua, F;D'Agostino, F;Ferrara, F;Gennarelli, C;Guerriero, R;Migliozzi, M;
2023-01-01

Abstract

An effective, probe-compensated, phaseless Near-Field-Far-Field (NF-FF) transformation technique with planar spiral scanning is presented. The phase retrieval problem is solved by a quadratic inverse process, whose data are the voltage squared amplitudes of the NF samples acquired on two scanning surfaces. The available information on the antenna under test and on the scanning geometry are used to provide efficient representations for both the unknowns and the data, thus improving the accuracy and reliability of the technique. Furthermore, disconnected apertures are dealt with by adopting two different sets of prolate spheroidal wave functions to represent the aperture fields. Experimental results are reported to assess the effectiveness of the proposed approach. A drastic reduction (about 90%) of the required NF samples, as compared to standard lambda/4 measurements (lambda being the wavelength), is observed. Aggregating the measurements on the two scanning surfaces, the technique uses less samples even when compared to the case of complex, lambda/2 measurements performed on a single surface. Our approach exhibits an accuracy comparable to that achieved when adopting complex measurements with non-redundant sampling or classical, lambda/2 plane-rectangular NF-FF transformations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4838712
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact