: Carbonyl-carbonyl interactions in peptides and proteins attracted considerable interest in recent years. Here we report a survey of carbonyl-carbonyl interactions in cyclic peptides, depsipeptides, peptoids and discuss the relationship between backbone torsion angles and CO∙∙∙CO distances. In general, φ values in the range between -40° and -90° and between 40° and 90° correspond to CO∙∙∙CO distances below 3.22 Å. By extending the analysis of carbonyl-carbonyl interactions in different types of beta turns in proteins, we also highlight the role of direct or reciprocal carbonyl-carbonyl interactions in stabilizing the beta turn conformation for each specific type. We confirmed the new type II beta turn, detected by Dunbrack and coworkers, and named Pa, and detect the presence of a direct carbonyl-carbonyl interaction between the second and third residues of the turn. We also evidenced the existence of another new type II beta turn, named pA (following Dunbrack's notation), which represents the alternative conformation of Pa with opposite φ and ψ values and is characterized by a direct carbonyl-carbonyl interaction between the second and third residues of the turn. Finally, we show that the occurrence of CO∙∙∙CO interactions could be also advocated to explain from a chemical point of view the diversity of turn types. This article is protected by copyright. All rights reserved.

Emerging role of carbonyl-carbonyl interactions in the classification of beta turns

D'Arminio, Nancy;Ruggiero, Valentina;Pierri, Giovanni;Marabotti, Anna
;
Tedesco, Consiglia
2023-01-01

Abstract

: Carbonyl-carbonyl interactions in peptides and proteins attracted considerable interest in recent years. Here we report a survey of carbonyl-carbonyl interactions in cyclic peptides, depsipeptides, peptoids and discuss the relationship between backbone torsion angles and CO∙∙∙CO distances. In general, φ values in the range between -40° and -90° and between 40° and 90° correspond to CO∙∙∙CO distances below 3.22 Å. By extending the analysis of carbonyl-carbonyl interactions in different types of beta turns in proteins, we also highlight the role of direct or reciprocal carbonyl-carbonyl interactions in stabilizing the beta turn conformation for each specific type. We confirmed the new type II beta turn, detected by Dunbrack and coworkers, and named Pa, and detect the presence of a direct carbonyl-carbonyl interaction between the second and third residues of the turn. We also evidenced the existence of another new type II beta turn, named pA (following Dunbrack's notation), which represents the alternative conformation of Pa with opposite φ and ψ values and is characterized by a direct carbonyl-carbonyl interaction between the second and third residues of the turn. Finally, we show that the occurrence of CO∙∙∙CO interactions could be also advocated to explain from a chemical point of view the diversity of turn types. This article is protected by copyright. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4852414
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact