The classical Erdős–Ginzburg–Ziv constant of a group G denotes the smallest positive integer ℓ such that any sequence S of length at least ℓ contains a zero-sum subsequence of length exp (G). In the recent paper (Integers 22: Paper No. A102, 17 pp., 2022), Caro and Schmitt generalized this concept, using the m-th degree symmetric polynomial em(S) instead of the sum of the elements of S and considering subsequences of a given length t. In particular, they defined the higher degree Erdős–Ginzburg–Ziv constants EGZ(t, R, m) of a finite commutative ring R and presented several lower and upper bounds to these constants. This paper aims to provide lower and upper bounds for EGZ(t, R, m) in case R=Fqn. The lower bounds here presented have been obtained, respectively, using the Lovász local lemma and the expurgation method and, for sufficiently large n, they beat the lower bound provided by Caro and Schmitt for the same kind of rings. Finally, we prove closed form upper bounds derived from the Ellenberg–Gijswijt and Sauermann results for the cap-set problem assuming that q= pk, t= p, and m= p- 1. Moreover, using the slice rank method, we derive a convex optimization problem that provides the best bounds for q= 3 k, t= 3 , m= 2 , and k= 2 , 3 , 4 , 5.

Bounds on the higher degree Erdős–Ginzburg–Ziv constants over F_q^n

Della Fiore Stefano
2023-01-01

Abstract

The classical Erdős–Ginzburg–Ziv constant of a group G denotes the smallest positive integer ℓ such that any sequence S of length at least ℓ contains a zero-sum subsequence of length exp (G). In the recent paper (Integers 22: Paper No. A102, 17 pp., 2022), Caro and Schmitt generalized this concept, using the m-th degree symmetric polynomial em(S) instead of the sum of the elements of S and considering subsequences of a given length t. In particular, they defined the higher degree Erdős–Ginzburg–Ziv constants EGZ(t, R, m) of a finite commutative ring R and presented several lower and upper bounds to these constants. This paper aims to provide lower and upper bounds for EGZ(t, R, m) in case R=Fqn. The lower bounds here presented have been obtained, respectively, using the Lovász local lemma and the expurgation method and, for sufficiently large n, they beat the lower bound provided by Caro and Schmitt for the same kind of rings. Finally, we prove closed form upper bounds derived from the Ellenberg–Gijswijt and Sauermann results for the cap-set problem assuming that q= pk, t= p, and m= p- 1. Moreover, using the slice rank method, we derive a convex optimization problem that provides the best bounds for q= 3 k, t= 3 , m= 2 , and k= 2 , 3 , 4 , 5.
2023
File in questo prodotto:
File Dimensione Formato  
s00013-023-01916-4 (2).pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Copyright dell'editore
Dimensione 324.25 kB
Formato Adobe PDF
324.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4853673
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact