An effective near-field to far-field transformation using a reduced number of near-field measurements collected via a spherical scan over the upper hemisphere, due to the presence of a flat metallic ground, is devised in this paper. Such a transformation relies on the non-redundant sampling representations of electromagnetic fields and exploits the image principle to properly account for the metallic ground, supposed to be of infinite extent and realised by perfectly conducting material. The sampling representation of the probe voltage over the upper hemisphere is developed by modelling the antenna under test and its image by a very adaptable convex surface, which is able to fit as much as possible the geometry of any kind of antenna, thus minimising the volumetric redundancy and, accordingly, the number of required samples as well as the measurement time. Then, the use of a two-dimensional optimal sampling interpolation algorithm allows the reconstruction of the voltage value at each sampling point of the spherical grid required by the classical near-field-to-far-field transformation developed by Hansen. Numerical examples proving the effectiveness of the developed sampling representation and related near-field-to-far-field transformation techniques are reported.

An Effective Spherical NF/FF Transformation Suitable for Characterising an Antenna under Test in Presence of an Infinite Perfectly Conducting Ground Plane

Ferrara F.;Gennarelli C.;Guerriero R.;Riccio G.
2024-01-01

Abstract

An effective near-field to far-field transformation using a reduced number of near-field measurements collected via a spherical scan over the upper hemisphere, due to the presence of a flat metallic ground, is devised in this paper. Such a transformation relies on the non-redundant sampling representations of electromagnetic fields and exploits the image principle to properly account for the metallic ground, supposed to be of infinite extent and realised by perfectly conducting material. The sampling representation of the probe voltage over the upper hemisphere is developed by modelling the antenna under test and its image by a very adaptable convex surface, which is able to fit as much as possible the geometry of any kind of antenna, thus minimising the volumetric redundancy and, accordingly, the number of required samples as well as the measurement time. Then, the use of a two-dimensional optimal sampling interpolation algorithm allows the reconstruction of the voltage value at each sampling point of the spherical grid required by the classical near-field-to-far-field transformation developed by Hansen. Numerical examples proving the effectiveness of the developed sampling representation and related near-field-to-far-field transformation techniques are reported.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4855732
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact